/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrDistanceFieldTextureEffect.h" #include "GrInvariantOutput.h" #include "gl/builders/GrGLProgramBuilder.h" #include "gl/GrGLProcessor.h" #include "gl/GrGLSL.h" #include "gl/GrGLTexture.h" #include "gl/GrGLGeometryProcessor.h" #include "GrTBackendProcessorFactory.h" #include "GrTexture.h" #include "SkDistanceFieldGen.h" // Assuming a radius of the diagonal of the fragment, hence a factor of sqrt(2)/2 #define SK_DistanceFieldAAFactor "0.7071" class GrGLDistanceFieldTextureEffect : public GrGLGeometryProcessor { public: GrGLDistanceFieldTextureEffect(const GrBackendProcessorFactory& factory, const GrProcessor&) : INHERITED (factory) , fTextureSize(SkISize::Make(-1,-1)) #ifdef SK_GAMMA_APPLY_TO_A8 , fLuminance(-1.0f) #endif {} virtual void emitCode(const EmitArgs& args) SK_OVERRIDE { const GrDistanceFieldTextureEffect& dfTexEffect = args.fGP.cast(); SkASSERT(1 == dfTexEffect.getVertexAttribs().count()); GrGLGPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); SkAssertResult(fsBuilder->enableFeature( GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); GrGLVertToFrag v(kVec2f_GrSLType); args.fPB->addVarying("TextureCoords", &v); GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder(); vsBuilder->codeAppendf("\t%s = %s;\n", v.vsOut(), dfTexEffect.inTextureCoords().c_str()); // setup position varying vsBuilder->codeAppendf("%s = %s * vec3(%s, 1);", vsBuilder->glPosition(), vsBuilder->uViewM(), vsBuilder->inPosition()); const char* textureSizeUniName = NULL; fTextureSizeUni = args.fPB->addUniform(GrGLProgramBuilder::kFragment_Visibility, kVec2f_GrSLType, "TextureSize", &textureSizeUniName); fsBuilder->codeAppend("\tvec4 texColor = "); fsBuilder->appendTextureLookup(args.fSamplers[0], v.fsIn(), kVec2f_GrSLType); fsBuilder->codeAppend(";\n"); fsBuilder->codeAppend("\tfloat distance = " SK_DistanceFieldMultiplier "*(texColor.r - " SK_DistanceFieldThreshold ");"); // we adjust for the effect of the transformation on the distance by using // the length of the gradient of the texture coordinates. We use st coordinates // to ensure we're mapping 1:1 from texel space to pixel space. fsBuilder->codeAppendf("\tvec2 uv = %s;\n", v.fsIn()); fsBuilder->codeAppendf("\tvec2 st = uv*%s;\n", textureSizeUniName); fsBuilder->codeAppend("\tfloat afwidth;\n"); if (dfTexEffect.getFlags() & kSimilarity_DistanceFieldEffectFlag) { // this gives us a smooth step across approximately one fragment fsBuilder->codeAppend("\tafwidth = abs(" SK_DistanceFieldAAFactor "*dFdx(st.x));\n"); } else { fsBuilder->codeAppend("\tvec2 Jdx = dFdx(st);\n"); fsBuilder->codeAppend("\tvec2 Jdy = dFdy(st);\n"); fsBuilder->codeAppend("\tvec2 uv_grad;\n"); if (args.fPB->ctxInfo().caps()->dropsTileOnZeroDivide()) { // this is to compensate for the Adreno, which likes to drop tiles on division by 0 fsBuilder->codeAppend("\tfloat uv_len2 = dot(uv, uv);\n"); fsBuilder->codeAppend("\tif (uv_len2 < 0.0001) {\n"); fsBuilder->codeAppend("\t\tuv_grad = vec2(0.7071, 0.7071);\n"); fsBuilder->codeAppend("\t} else {\n"); fsBuilder->codeAppend("\t\tuv_grad = uv*inversesqrt(uv_len2);\n"); fsBuilder->codeAppend("\t}\n"); } else { fsBuilder->codeAppend("\tuv_grad = normalize(uv);\n"); } fsBuilder->codeAppend("\tvec2 grad = vec2(uv_grad.x*Jdx.x + uv_grad.y*Jdy.x,\n"); fsBuilder->codeAppend("\t uv_grad.x*Jdx.y + uv_grad.y*Jdy.y);\n"); // this gives us a smooth step across approximately one fragment fsBuilder->codeAppend("\tafwidth = " SK_DistanceFieldAAFactor "*length(grad);\n"); } fsBuilder->codeAppend("\tfloat val = smoothstep(-afwidth, afwidth, distance);\n"); #ifdef SK_GAMMA_APPLY_TO_A8 // adjust based on gamma const char* luminanceUniName = NULL; // width, height, 1/(3*width) fLuminanceUni = args.fPB->addUniform(GrGLProgramBuilder::kFragment_Visibility, kFloat_GrSLType, "Luminance", &luminanceUniName); fsBuilder->codeAppendf("\tuv = vec2(val, %s);\n", luminanceUniName); fsBuilder->codeAppend("\tvec4 gammaColor = "); fsBuilder->appendTextureLookup(args.fSamplers[1], "uv", kVec2f_GrSLType); fsBuilder->codeAppend(";\n"); fsBuilder->codeAppend("\tval = gammaColor.r;\n"); #endif fsBuilder->codeAppendf("\t%s = %s;\n", args.fOutput, (GrGLSLExpr4(args.fInput) * GrGLSLExpr1("val")).c_str()); } virtual void setData(const GrGLProgramDataManager& pdman, const GrProcessor& effect) SK_OVERRIDE { SkASSERT(fTextureSizeUni.isValid()); GrTexture* texture = effect.texture(0); if (texture->width() != fTextureSize.width() || texture->height() != fTextureSize.height()) { fTextureSize = SkISize::Make(texture->width(), texture->height()); pdman.set2f(fTextureSizeUni, SkIntToScalar(fTextureSize.width()), SkIntToScalar(fTextureSize.height())); } #ifdef SK_GAMMA_APPLY_TO_A8 const GrDistanceFieldTextureEffect& dfTexEffect = effect.cast(); float luminance = dfTexEffect.getLuminance(); if (luminance != fLuminance) { pdman.set1f(fLuminanceUni, luminance); fLuminance = luminance; } #endif } static inline void GenKey(const GrProcessor& processor, const GrGLCaps&, GrProcessorKeyBuilder* b) { const GrDistanceFieldTextureEffect& dfTexEffect = processor.cast(); b->add32(dfTexEffect.getFlags()); } private: GrGLProgramDataManager::UniformHandle fTextureSizeUni; SkISize fTextureSize; GrGLProgramDataManager::UniformHandle fLuminanceUni; float fLuminance; typedef GrGLGeometryProcessor INHERITED; }; /////////////////////////////////////////////////////////////////////////////// GrDistanceFieldTextureEffect::GrDistanceFieldTextureEffect(GrTexture* texture, const GrTextureParams& params, #ifdef SK_GAMMA_APPLY_TO_A8 GrTexture* gamma, const GrTextureParams& gammaParams, float luminance, #endif uint32_t flags) : fTextureAccess(texture, params) #ifdef SK_GAMMA_APPLY_TO_A8 , fGammaTextureAccess(gamma, gammaParams) , fLuminance(luminance) #endif , fFlags(flags & kNonLCD_DistanceFieldEffectMask) , fInTextureCoords(this->addVertexAttrib(GrShaderVar("inTextureCoords", kVec2f_GrSLType, GrShaderVar::kAttribute_TypeModifier))) { SkASSERT(!(flags & ~kNonLCD_DistanceFieldEffectMask)); this->addTextureAccess(&fTextureAccess); #ifdef SK_GAMMA_APPLY_TO_A8 this->addTextureAccess(&fGammaTextureAccess); #endif } bool GrDistanceFieldTextureEffect::onIsEqual(const GrGeometryProcessor& other) const { const GrDistanceFieldTextureEffect& cte = other.cast(); return #ifdef SK_GAMMA_APPLY_TO_A8 fLuminance == cte.fLuminance && #endif fFlags == cte.fFlags; } void GrDistanceFieldTextureEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const { inout->mulByUnknownAlpha(); } const GrBackendGeometryProcessorFactory& GrDistanceFieldTextureEffect::getFactory() const { return GrTBackendGeometryProcessorFactory::getInstance(); } /////////////////////////////////////////////////////////////////////////////// GR_DEFINE_GEOMETRY_PROCESSOR_TEST(GrDistanceFieldTextureEffect); GrGeometryProcessor* GrDistanceFieldTextureEffect::TestCreate(SkRandom* random, GrContext*, const GrDrawTargetCaps&, GrTexture* textures[]) { int texIdx = random->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx : GrProcessorUnitTest::kAlphaTextureIdx; #ifdef SK_GAMMA_APPLY_TO_A8 int texIdx2 = random->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx : GrProcessorUnitTest::kAlphaTextureIdx; #endif static const SkShader::TileMode kTileModes[] = { SkShader::kClamp_TileMode, SkShader::kRepeat_TileMode, SkShader::kMirror_TileMode, }; SkShader::TileMode tileModes[] = { kTileModes[random->nextULessThan(SK_ARRAY_COUNT(kTileModes))], kTileModes[random->nextULessThan(SK_ARRAY_COUNT(kTileModes))], }; GrTextureParams params(tileModes, random->nextBool() ? GrTextureParams::kBilerp_FilterMode : GrTextureParams::kNone_FilterMode); #ifdef SK_GAMMA_APPLY_TO_A8 GrTextureParams params2(tileModes, random->nextBool() ? GrTextureParams::kBilerp_FilterMode : GrTextureParams::kNone_FilterMode); #endif return GrDistanceFieldTextureEffect::Create(textures[texIdx], params, #ifdef SK_GAMMA_APPLY_TO_A8 textures[texIdx2], params2, random->nextF(), #endif random->nextBool() ? kSimilarity_DistanceFieldEffectFlag : 0); } /////////////////////////////////////////////////////////////////////////////// class GrGLDistanceFieldNoGammaTextureEffect : public GrGLGeometryProcessor { public: GrGLDistanceFieldNoGammaTextureEffect(const GrBackendProcessorFactory& factory, const GrProcessor& effect) : INHERITED(factory) , fTextureSize(SkISize::Make(-1, -1)) {} virtual void emitCode(const EmitArgs& args) SK_OVERRIDE { const GrDistanceFieldNoGammaTextureEffect& dfTexEffect = args.fGP.cast(); SkASSERT(1 == dfTexEffect.getVertexAttribs().count()); GrGLGPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); SkAssertResult(fsBuilder->enableFeature( GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); GrGLVertToFrag v(kVec2f_GrSLType); args.fPB->addVarying("TextureCoords", &v); GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder(); vsBuilder->codeAppendf("%s = %s;", v.vsOut(), dfTexEffect.inTextureCoords().c_str()); // setup position varying vsBuilder->codeAppendf("%s = %s * vec3(%s, 1);", vsBuilder->glPosition(), vsBuilder->uViewM(), vsBuilder->inPosition()); const char* textureSizeUniName = NULL; fTextureSizeUni = args.fPB->addUniform(GrGLProgramBuilder::kFragment_Visibility, kVec2f_GrSLType, "TextureSize", &textureSizeUniName); fsBuilder->codeAppend("vec4 texColor = "); fsBuilder->appendTextureLookup(args.fSamplers[0], v.fsIn(), kVec2f_GrSLType); fsBuilder->codeAppend(";"); fsBuilder->codeAppend("float distance = " SK_DistanceFieldMultiplier "*(texColor.r - " SK_DistanceFieldThreshold ");"); // we adjust for the effect of the transformation on the distance by using // the length of the gradient of the texture coordinates. We use st coordinates // to ensure we're mapping 1:1 from texel space to pixel space. fsBuilder->codeAppendf("vec2 uv = %s;", v.fsIn()); fsBuilder->codeAppendf("vec2 st = uv*%s;", textureSizeUniName); fsBuilder->codeAppend("float afwidth;"); if (dfTexEffect.getFlags() & kSimilarity_DistanceFieldEffectFlag) { // this gives us a smooth step across approximately one fragment fsBuilder->codeAppend("afwidth = abs(" SK_DistanceFieldAAFactor "*dFdx(st.x));"); } else { fsBuilder->codeAppend("vec2 Jdx = dFdx(st);"); fsBuilder->codeAppend("vec2 Jdy = dFdy(st);"); fsBuilder->codeAppend("vec2 uv_grad;"); if (args.fPB->ctxInfo().caps()->dropsTileOnZeroDivide()) { // this is to compensate for the Adreno, which likes to drop tiles on division by 0 fsBuilder->codeAppend("float uv_len2 = dot(uv, uv);"); fsBuilder->codeAppend("if (uv_len2 < 0.0001) {"); fsBuilder->codeAppend("uv_grad = vec2(0.7071, 0.7071);"); fsBuilder->codeAppend("} else {"); fsBuilder->codeAppend("uv_grad = uv*inversesqrt(uv_len2);"); fsBuilder->codeAppend("}"); } else { fsBuilder->codeAppend("uv_grad = normalize(uv);"); } fsBuilder->codeAppend("vec2 grad = vec2(uv_grad.x*Jdx.x + uv_grad.y*Jdy.x,"); fsBuilder->codeAppend(" uv_grad.x*Jdx.y + uv_grad.y*Jdy.y);"); // this gives us a smooth step across approximately one fragment fsBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*length(grad);"); } fsBuilder->codeAppend("float val = smoothstep(-afwidth, afwidth, distance);"); fsBuilder->codeAppendf("%s = %s;", args.fOutput, (GrGLSLExpr4(args.fInput) * GrGLSLExpr1("val")).c_str()); } virtual void setData(const GrGLProgramDataManager& pdman, const GrProcessor& effect) SK_OVERRIDE { SkASSERT(fTextureSizeUni.isValid()); GrTexture* texture = effect.texture(0); if (texture->width() != fTextureSize.width() || texture->height() != fTextureSize.height()) { fTextureSize = SkISize::Make(texture->width(), texture->height()); pdman.set2f(fTextureSizeUni, SkIntToScalar(fTextureSize.width()), SkIntToScalar(fTextureSize.height())); } } static inline void GenKey(const GrProcessor& effect, const GrGLCaps&, GrProcessorKeyBuilder* b) { const GrDistanceFieldNoGammaTextureEffect& dfTexEffect = effect.cast(); b->add32(dfTexEffect.getFlags()); } private: GrGLProgramDataManager::UniformHandle fTextureSizeUni; SkISize fTextureSize; typedef GrGLGeometryProcessor INHERITED; }; /////////////////////////////////////////////////////////////////////////////// GrDistanceFieldNoGammaTextureEffect::GrDistanceFieldNoGammaTextureEffect(GrTexture* texture, const GrTextureParams& params, uint32_t flags) : fTextureAccess(texture, params) , fFlags(flags & kNonLCD_DistanceFieldEffectMask) , fInTextureCoords(this->addVertexAttrib(GrShaderVar("inTextureCoords", kVec2f_GrSLType, GrShaderVar::kAttribute_TypeModifier))) { SkASSERT(!(flags & ~kNonLCD_DistanceFieldEffectMask)); this->addTextureAccess(&fTextureAccess); } bool GrDistanceFieldNoGammaTextureEffect::onIsEqual(const GrGeometryProcessor& other) const { const GrDistanceFieldNoGammaTextureEffect& cte = other.cast(); return fFlags == cte.fFlags; } void GrDistanceFieldNoGammaTextureEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const { inout->mulByUnknownAlpha(); } const GrBackendGeometryProcessorFactory& GrDistanceFieldNoGammaTextureEffect::getFactory() const { return GrTBackendGeometryProcessorFactory::getInstance(); } /////////////////////////////////////////////////////////////////////////////// GR_DEFINE_GEOMETRY_PROCESSOR_TEST(GrDistanceFieldNoGammaTextureEffect); GrGeometryProcessor* GrDistanceFieldNoGammaTextureEffect::TestCreate(SkRandom* random, GrContext*, const GrDrawTargetCaps&, GrTexture* textures[]) { int texIdx = random->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx : GrProcessorUnitTest::kAlphaTextureIdx; static const SkShader::TileMode kTileModes[] = { SkShader::kClamp_TileMode, SkShader::kRepeat_TileMode, SkShader::kMirror_TileMode, }; SkShader::TileMode tileModes[] = { kTileModes[random->nextULessThan(SK_ARRAY_COUNT(kTileModes))], kTileModes[random->nextULessThan(SK_ARRAY_COUNT(kTileModes))], }; GrTextureParams params(tileModes, random->nextBool() ? GrTextureParams::kBilerp_FilterMode : GrTextureParams::kNone_FilterMode); return GrDistanceFieldNoGammaTextureEffect::Create(textures[texIdx], params, random->nextBool() ? kSimilarity_DistanceFieldEffectFlag : 0); } /////////////////////////////////////////////////////////////////////////////// class GrGLDistanceFieldLCDTextureEffect : public GrGLGeometryProcessor { public: GrGLDistanceFieldLCDTextureEffect(const GrBackendProcessorFactory& factory, const GrProcessor&) : INHERITED (factory) , fTextureSize(SkISize::Make(-1,-1)) , fTextColor(GrColor_ILLEGAL) {} virtual void emitCode(const EmitArgs& args) SK_OVERRIDE { const GrDistanceFieldLCDTextureEffect& dfTexEffect = args.fGP.cast(); SkASSERT(1 == dfTexEffect.getVertexAttribs().count()); GrGLVertToFrag v(kVec2f_GrSLType); args.fPB->addVarying("TextureCoords", &v); GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder(); vsBuilder->codeAppendf("\t%s = %s;\n", v.vsOut(), dfTexEffect.inTextureCoords().c_str()); // setup position varying vsBuilder->codeAppendf("%s = %s * vec3(%s, 1);", vsBuilder->glPosition(), vsBuilder->uViewM(), vsBuilder->inPosition()); const char* textureSizeUniName = NULL; // width, height, 1/(3*width) fTextureSizeUni = args.fPB->addUniform(GrGLProgramBuilder::kFragment_Visibility, kVec3f_GrSLType, "TextureSize", &textureSizeUniName); GrGLGPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); SkAssertResult(fsBuilder->enableFeature( GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); // create LCD offset adjusted by inverse of transform fsBuilder->codeAppendf("\tvec2 uv = %s;\n", v.fsIn()); fsBuilder->codeAppendf("\tvec2 st = uv*%s.xy;\n", textureSizeUniName); bool isUniformScale = !!(dfTexEffect.getFlags() & kUniformScale_DistanceFieldEffectMask); if (isUniformScale) { fsBuilder->codeAppend("\tfloat dx = dFdx(st.x);\n"); fsBuilder->codeAppendf("\tvec2 offset = vec2(dx*%s.z, 0.0);\n", textureSizeUniName); } else { fsBuilder->codeAppend("\tvec2 Jdx = dFdx(st);\n"); fsBuilder->codeAppend("\tvec2 Jdy = dFdy(st);\n"); fsBuilder->codeAppendf("\tvec2 offset = %s.z*Jdx;\n", textureSizeUniName); } // green is distance to uv center fsBuilder->codeAppend("\tvec4 texColor = "); fsBuilder->appendTextureLookup(args.fSamplers[0], "uv", kVec2f_GrSLType); fsBuilder->codeAppend(";\n"); fsBuilder->codeAppend("\tvec3 distance;\n"); fsBuilder->codeAppend("\tdistance.y = texColor.r;\n"); // red is distance to left offset fsBuilder->codeAppend("\tvec2 uv_adjusted = uv - offset;\n"); fsBuilder->codeAppend("\ttexColor = "); fsBuilder->appendTextureLookup(args.fSamplers[0], "uv_adjusted", kVec2f_GrSLType); fsBuilder->codeAppend(";\n"); fsBuilder->codeAppend("\tdistance.x = texColor.r;\n"); // blue is distance to right offset fsBuilder->codeAppend("\tuv_adjusted = uv + offset;\n"); fsBuilder->codeAppend("\ttexColor = "); fsBuilder->appendTextureLookup(args.fSamplers[0], "uv_adjusted", kVec2f_GrSLType); fsBuilder->codeAppend(";\n"); fsBuilder->codeAppend("\tdistance.z = texColor.r;\n"); fsBuilder->codeAppend("\tdistance = " "vec3(" SK_DistanceFieldMultiplier ")*(distance - vec3(" SK_DistanceFieldThreshold"));"); // we adjust for the effect of the transformation on the distance by using // the length of the gradient of the texture coordinates. We use st coordinates // to ensure we're mapping 1:1 from texel space to pixel space. // To be strictly correct, we should compute the anti-aliasing factor separately // for each color component. However, this is only important when using perspective // transformations, and even then using a single factor seems like a reasonable // trade-off between quality and speed. fsBuilder->codeAppend("\tfloat afwidth;\n"); if (isUniformScale) { // this gives us a smooth step across approximately one fragment fsBuilder->codeAppend("\tafwidth = abs(" SK_DistanceFieldAAFactor "*dx);\n"); } else { fsBuilder->codeAppend("\tvec2 uv_grad;\n"); if (args.fPB->ctxInfo().caps()->dropsTileOnZeroDivide()) { // this is to compensate for the Adreno, which likes to drop tiles on division by 0 fsBuilder->codeAppend("\tfloat uv_len2 = dot(uv, uv);\n"); fsBuilder->codeAppend("\tif (uv_len2 < 0.0001) {\n"); fsBuilder->codeAppend("\t\tuv_grad = vec2(0.7071, 0.7071);\n"); fsBuilder->codeAppend("\t} else {\n"); fsBuilder->codeAppend("\t\tuv_grad = uv*inversesqrt(uv_len2);\n"); fsBuilder->codeAppend("\t}\n"); } else { fsBuilder->codeAppend("\tuv_grad = normalize(uv);\n"); } fsBuilder->codeAppend("\tvec2 grad = vec2(uv_grad.x*Jdx.x + uv_grad.y*Jdy.x,\n"); fsBuilder->codeAppend("\t uv_grad.x*Jdx.y + uv_grad.y*Jdy.y);\n"); // this gives us a smooth step across approximately one fragment fsBuilder->codeAppend("\tafwidth = " SK_DistanceFieldAAFactor "*length(grad);\n"); } fsBuilder->codeAppend("\tvec4 val = vec4(smoothstep(vec3(-afwidth), vec3(afwidth), distance), 1.0);\n"); // adjust based on gamma const char* textColorUniName = NULL; // width, height, 1/(3*width) fTextColorUni = args.fPB->addUniform(GrGLProgramBuilder::kFragment_Visibility, kVec3f_GrSLType, "TextColor", &textColorUniName); fsBuilder->codeAppendf("\tuv = vec2(val.x, %s.x);\n", textColorUniName); fsBuilder->codeAppend("\tvec4 gammaColor = "); fsBuilder->appendTextureLookup(args.fSamplers[1], "uv", kVec2f_GrSLType); fsBuilder->codeAppend(";\n"); fsBuilder->codeAppend("\tval.x = gammaColor.r;\n"); fsBuilder->codeAppendf("\tuv = vec2(val.y, %s.y);\n", textColorUniName); fsBuilder->codeAppend("\tgammaColor = "); fsBuilder->appendTextureLookup(args.fSamplers[1], "uv", kVec2f_GrSLType); fsBuilder->codeAppend(";\n"); fsBuilder->codeAppend("\tval.y = gammaColor.r;\n"); fsBuilder->codeAppendf("\tuv = vec2(val.z, %s.z);\n", textColorUniName); fsBuilder->codeAppend("\tgammaColor = "); fsBuilder->appendTextureLookup(args.fSamplers[1], "uv", kVec2f_GrSLType); fsBuilder->codeAppend(";\n"); fsBuilder->codeAppend("\tval.z = gammaColor.r;\n"); fsBuilder->codeAppendf("\t%s = %s;\n", args.fOutput, (GrGLSLExpr4(args.fInput) * GrGLSLExpr4("val")).c_str()); } virtual void setData(const GrGLProgramDataManager& pdman, const GrProcessor& processor) SK_OVERRIDE { SkASSERT(fTextureSizeUni.isValid()); SkASSERT(fTextColorUni.isValid()); const GrDistanceFieldLCDTextureEffect& dfTexEffect = processor.cast(); GrTexture* texture = processor.texture(0); if (texture->width() != fTextureSize.width() || texture->height() != fTextureSize.height()) { fTextureSize = SkISize::Make(texture->width(), texture->height()); float delta = 1.0f/(3.0f*texture->width()); if (dfTexEffect.getFlags() & kBGR_DistanceFieldEffectFlag) { delta = -delta; } pdman.set3f(fTextureSizeUni, SkIntToScalar(fTextureSize.width()), SkIntToScalar(fTextureSize.height()), delta); } GrColor textColor = dfTexEffect.getTextColor(); if (textColor != fTextColor) { static const float ONE_OVER_255 = 1.f / 255.f; pdman.set3f(fTextColorUni, GrColorUnpackR(textColor) * ONE_OVER_255, GrColorUnpackG(textColor) * ONE_OVER_255, GrColorUnpackB(textColor) * ONE_OVER_255); fTextColor = textColor; } } static inline void GenKey(const GrProcessor& processor, const GrGLCaps&, GrProcessorKeyBuilder* b) { const GrDistanceFieldLCDTextureEffect& dfTexEffect = processor.cast(); b->add32(dfTexEffect.getFlags()); } private: GrGLProgramDataManager::UniformHandle fTextureSizeUni; SkISize fTextureSize; GrGLProgramDataManager::UniformHandle fTextColorUni; SkColor fTextColor; typedef GrGLGeometryProcessor INHERITED; }; /////////////////////////////////////////////////////////////////////////////// GrDistanceFieldLCDTextureEffect::GrDistanceFieldLCDTextureEffect( GrTexture* texture, const GrTextureParams& params, GrTexture* gamma, const GrTextureParams& gParams, SkColor textColor, uint32_t flags) : fTextureAccess(texture, params) , fGammaTextureAccess(gamma, gParams) , fTextColor(textColor) , fFlags(flags & kLCD_DistanceFieldEffectMask) , fInTextureCoords(this->addVertexAttrib(GrShaderVar("inTextureCoords", kVec2f_GrSLType, GrShaderVar::kAttribute_TypeModifier))) { SkASSERT(!(flags & ~kLCD_DistanceFieldEffectMask) && (flags & kUseLCD_DistanceFieldEffectFlag)); this->addTextureAccess(&fTextureAccess); this->addTextureAccess(&fGammaTextureAccess); } bool GrDistanceFieldLCDTextureEffect::onIsEqual(const GrGeometryProcessor& other) const { const GrDistanceFieldLCDTextureEffect& cte = other.cast(); return (fTextColor == cte.fTextColor && fFlags == cte.fFlags); } void GrDistanceFieldLCDTextureEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const { inout->mulByUnknownColor(); } const GrBackendGeometryProcessorFactory& GrDistanceFieldLCDTextureEffect::getFactory() const { return GrTBackendGeometryProcessorFactory::getInstance(); } /////////////////////////////////////////////////////////////////////////////// GR_DEFINE_GEOMETRY_PROCESSOR_TEST(GrDistanceFieldLCDTextureEffect); GrGeometryProcessor* GrDistanceFieldLCDTextureEffect::TestCreate(SkRandom* random, GrContext*, const GrDrawTargetCaps&, GrTexture* textures[]) { int texIdx = random->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx : GrProcessorUnitTest::kAlphaTextureIdx; int texIdx2 = random->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx : GrProcessorUnitTest::kAlphaTextureIdx; static const SkShader::TileMode kTileModes[] = { SkShader::kClamp_TileMode, SkShader::kRepeat_TileMode, SkShader::kMirror_TileMode, }; SkShader::TileMode tileModes[] = { kTileModes[random->nextULessThan(SK_ARRAY_COUNT(kTileModes))], kTileModes[random->nextULessThan(SK_ARRAY_COUNT(kTileModes))], }; GrTextureParams params(tileModes, random->nextBool() ? GrTextureParams::kBilerp_FilterMode : GrTextureParams::kNone_FilterMode); GrTextureParams params2(tileModes, random->nextBool() ? GrTextureParams::kBilerp_FilterMode : GrTextureParams::kNone_FilterMode); GrColor textColor = GrColorPackRGBA(random->nextULessThan(256), random->nextULessThan(256), random->nextULessThan(256), random->nextULessThan(256)); uint32_t flags = kUseLCD_DistanceFieldEffectFlag; flags |= random->nextBool() ? kUniformScale_DistanceFieldEffectMask : 0; flags |= random->nextBool() ? kBGR_DistanceFieldEffectFlag : 0; return GrDistanceFieldLCDTextureEffect::Create(textures[texIdx], params, textures[texIdx2], params2, textColor, flags); }