/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrDistanceFieldGeoProc.h" #include "GrAtlasedShaderHelpers.h" #include "GrTexture.h" #include "SkDistanceFieldGen.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLGeometryProcessor.h" #include "glsl/GrGLSLProgramDataManager.h" #include "glsl/GrGLSLUniformHandler.h" #include "glsl/GrGLSLUtil.h" #include "glsl/GrGLSLVarying.h" #include "glsl/GrGLSLVertexGeoBuilder.h" // Assuming a radius of a little less than the diagonal of the fragment #define SK_DistanceFieldAAFactor "0.65" class GrGLDistanceFieldA8TextGeoProc : public GrGLSLGeometryProcessor { public: GrGLDistanceFieldA8TextGeoProc() = default; void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{ const GrDistanceFieldA8TextGeoProc& dfTexEffect = args.fGP.cast(); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; // emit attributes varyingHandler->emitAttributes(dfTexEffect); const char* atlasSizeInvName; fAtlasSizeInvUniform = uniformHandler->addUniform(kVertex_GrShaderFlag, kFloat2_GrSLType, kHigh_GrSLPrecision, "AtlasSizeInv", &atlasSizeInvName); #ifdef SK_GAMMA_APPLY_TO_A8 // adjust based on gamma const char* distanceAdjustUniName = nullptr; // width, height, 1/(3*width) fDistanceAdjustUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType, "DistanceAdjust", &distanceAdjustUniName); #endif // Setup pass through color varyingHandler->addPassThroughAttribute(dfTexEffect.inColor(), args.fOutputColor); // Setup position gpArgs->fPositionVar = dfTexEffect.inPosition().asShaderVar(); // emit transforms this->emitTransforms(vertBuilder, varyingHandler, uniformHandler, dfTexEffect.inPosition().asShaderVar(), dfTexEffect.localMatrix(), args.fFPCoordTransformHandler); // add varyings GrGLSLVarying uv(kFloat2_GrSLType); GrSLType texIdxType = args.fShaderCaps->integerSupport() ? kInt_GrSLType : kFloat_GrSLType; GrGLSLVarying texIdx(texIdxType); GrGLSLVarying st(kFloat2_GrSLType); append_index_uv_varyings(args, dfTexEffect.inTextureCoords().name(), atlasSizeInvName, &uv, &texIdx, &st); bool isUniformScale = (dfTexEffect.getFlags() & kUniformScale_DistanceFieldEffectMask) == kUniformScale_DistanceFieldEffectMask; bool isSimilarity = SkToBool(dfTexEffect.getFlags() & kSimilarity_DistanceFieldEffectFlag); bool isGammaCorrect = SkToBool(dfTexEffect.getFlags() & kGammaCorrect_DistanceFieldEffectFlag); bool isAliased = SkToBool(dfTexEffect.getFlags() & kAliased_DistanceFieldEffectFlag); // Use highp to work around aliasing issues fragBuilder->codeAppendf("float2 uv = %s;\n", uv.fsIn()); fragBuilder->codeAppend("half4 texColor;"); append_multitexture_lookup(args, dfTexEffect.numTextureSamplers(), texIdx, "uv", "texColor"); fragBuilder->codeAppend("half distance = " SK_DistanceFieldMultiplier "*(texColor.r - " SK_DistanceFieldThreshold ");"); #ifdef SK_GAMMA_APPLY_TO_A8 // adjust width based on gamma fragBuilder->codeAppendf("distance -= %s;", distanceAdjustUniName); #endif fragBuilder->codeAppend("half afwidth;"); if (isUniformScale) { // For uniform scale, we adjust for the effect of the transformation on the distance // by using the length of the gradient of the t coordinate in the y direction. // We use st coordinates to ensure we're mapping 1:1 from texel space to pixel space. // this gives us a smooth step across approximately one fragment #ifdef SK_VULKAN fragBuilder->codeAppendf("afwidth = abs(" SK_DistanceFieldAAFactor "*dFdx(%s.x));", st.fsIn()); #else // We use the y gradient because there is a bug in the Mali 400 in the x direction. fragBuilder->codeAppendf("afwidth = abs(" SK_DistanceFieldAAFactor "*dFdy(%s.y));", st.fsIn()); #endif } else if (isSimilarity) { // For similarity transform, we adjust the effect of the transformation on the distance // by using the length of the gradient of the texture coordinates. We use st coordinates // to ensure we're mapping 1:1 from texel space to pixel space. // We use the y gradient because there is a bug in the Mali 400 in the x direction. // this gives us a smooth step across approximately one fragment #ifdef SK_VULKAN fragBuilder->codeAppendf("half st_grad_len = length(dFdx(%s));", st.fsIn()); #else // We use the y gradient because there is a bug in the Mali 400 in the x direction. fragBuilder->codeAppendf("half st_grad_len = length(dFdy(%s));", st.fsIn()); #endif fragBuilder->codeAppend("afwidth = abs(" SK_DistanceFieldAAFactor "*st_grad_len);"); } else { // For general transforms, to determine the amount of correction we multiply a unit // vector pointing along the SDF gradient direction by the Jacobian of the st coords // (which is the inverse transform for this fragment) and take the length of the result. fragBuilder->codeAppend("half2 dist_grad = half2(dFdx(distance), dFdy(distance));"); // the length of the gradient may be 0, so we need to check for this // this also compensates for the Adreno, which likes to drop tiles on division by 0 fragBuilder->codeAppend("half dg_len2 = dot(dist_grad, dist_grad);"); fragBuilder->codeAppend("if (dg_len2 < 0.0001) {"); fragBuilder->codeAppend("dist_grad = half2(0.7071, 0.7071);"); fragBuilder->codeAppend("} else {"); fragBuilder->codeAppend("dist_grad = dist_grad*inversesqrt(dg_len2);"); fragBuilder->codeAppend("}"); fragBuilder->codeAppendf("half2 Jdx = dFdx(%s);", st.fsIn()); fragBuilder->codeAppendf("half2 Jdy = dFdy(%s);", st.fsIn()); fragBuilder->codeAppend("half2 grad = half2(dist_grad.x*Jdx.x + dist_grad.y*Jdy.x,"); fragBuilder->codeAppend(" dist_grad.x*Jdx.y + dist_grad.y*Jdy.y);"); // this gives us a smooth step across approximately one fragment fragBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*length(grad);"); } if (isAliased) { fragBuilder->codeAppend("half val = distance > 0 ? 1.0 : 0.0;"); } else if (isGammaCorrect) { // The smoothstep falloff compensates for the non-linear sRGB response curve. If we are // doing gamma-correct rendering (to an sRGB or F16 buffer), then we actually want // distance mapped linearly to coverage, so use a linear step: fragBuilder->codeAppend( "half val = clamp((distance + afwidth) / (2.0 * afwidth), 0.0, 1.0);"); } else { fragBuilder->codeAppend("half val = smoothstep(-afwidth, afwidth, distance);"); } fragBuilder->codeAppendf("%s = half4(val);", args.fOutputCoverage); } void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& proc, FPCoordTransformIter&& transformIter) override { const GrDistanceFieldA8TextGeoProc& dfa8gp = proc.cast(); #ifdef SK_GAMMA_APPLY_TO_A8 float distanceAdjust = dfa8gp.getDistanceAdjust(); if (distanceAdjust != fDistanceAdjust) { fDistanceAdjust = distanceAdjust; pdman.set1f(fDistanceAdjustUni, distanceAdjust); } #endif SkASSERT(dfa8gp.numTextureSamplers() >= 1); GrTexture* atlas = dfa8gp.textureSampler(0).peekTexture(); SkASSERT(atlas && SkIsPow2(atlas->width()) && SkIsPow2(atlas->height())); if (fAtlasSize.fWidth != atlas->width() || fAtlasSize.fHeight != atlas->height()) { fAtlasSize.set(atlas->width(), atlas->height()); pdman.set2f(fAtlasSizeInvUniform, 1.0f / atlas->width(), 1.0f / atlas->height()); } this->setTransformDataHelper(dfa8gp.localMatrix(), pdman, &transformIter); } static inline void GenKey(const GrGeometryProcessor& gp, const GrShaderCaps&, GrProcessorKeyBuilder* b) { const GrDistanceFieldA8TextGeoProc& dfTexEffect = gp.cast(); uint32_t key = dfTexEffect.getFlags(); b->add32(key); b->add32(dfTexEffect.numTextureSamplers()); } private: #ifdef SK_GAMMA_APPLY_TO_A8 float fDistanceAdjust = -1.f; UniformHandle fDistanceAdjustUni; #endif SkISize fAtlasSize = {0, 0}; UniformHandle fAtlasSizeInvUniform; typedef GrGLSLGeometryProcessor INHERITED; }; /////////////////////////////////////////////////////////////////////////////// constexpr GrPrimitiveProcessor::Attribute GrDistanceFieldA8TextGeoProc::kInColor; constexpr GrPrimitiveProcessor::Attribute GrDistanceFieldA8TextGeoProc::kInTextureCoords; GrDistanceFieldA8TextGeoProc::GrDistanceFieldA8TextGeoProc(const sk_sp* proxies, int numProxies, const GrSamplerState& params, #ifdef SK_GAMMA_APPLY_TO_A8 float distanceAdjust, #endif uint32_t flags, const SkMatrix& localMatrix) : INHERITED(kGrDistanceFieldA8TextGeoProc_ClassID) , fLocalMatrix(localMatrix) , fFlags(flags & kNonLCD_DistanceFieldEffectMask) #ifdef SK_GAMMA_APPLY_TO_A8 , fDistanceAdjust(distanceAdjust) #endif { SkASSERT(numProxies <= kMaxTextures); SkASSERT(!(flags & ~kNonLCD_DistanceFieldEffectMask)); if (flags & kPerspective_DistanceFieldEffectFlag) { fInPosition = {"inPosition", kFloat3_GrVertexAttribType}; } else { fInPosition = {"inPosition", kFloat2_GrVertexAttribType}; } this->setVertexAttributeCnt(3); for (int i = 0; i < numProxies; ++i) { SkASSERT(proxies[i]); fTextureSamplers[i].reset(std::move(proxies[i]), params); } this->setTextureSamplerCnt(numProxies); } void GrDistanceFieldA8TextGeoProc::addNewProxies(const sk_sp* proxies, int numProxies, const GrSamplerState& params) { SkASSERT(numProxies <= kMaxTextures); for (int i = 0; i < numProxies; ++i) { SkASSERT(proxies[i]); if (!fTextureSamplers[i].isInitialized()) { fTextureSamplers[i].reset(std::move(proxies[i]), params); } } this->setTextureSamplerCnt(numProxies); } void GrDistanceFieldA8TextGeoProc::getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { GrGLDistanceFieldA8TextGeoProc::GenKey(*this, caps, b); } GrGLSLPrimitiveProcessor* GrDistanceFieldA8TextGeoProc::createGLSLInstance(const GrShaderCaps&) const { return new GrGLDistanceFieldA8TextGeoProc(); } /////////////////////////////////////////////////////////////////////////////// GR_DEFINE_GEOMETRY_PROCESSOR_TEST(GrDistanceFieldA8TextGeoProc); #if GR_TEST_UTILS sk_sp GrDistanceFieldA8TextGeoProc::TestCreate(GrProcessorTestData* d) { int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx : GrProcessorUnitTest::kAlphaTextureIdx; sk_sp proxies[kMaxTextures] = { d->textureProxy(texIdx), nullptr, nullptr, nullptr }; GrSamplerState::WrapMode wrapModes[2]; GrTest::TestWrapModes(d->fRandom, wrapModes); GrSamplerState samplerState(wrapModes, d->fRandom->nextBool() ? GrSamplerState::Filter::kBilerp : GrSamplerState::Filter::kNearest); uint32_t flags = 0; flags |= d->fRandom->nextBool() ? kSimilarity_DistanceFieldEffectFlag : 0; if (flags & kSimilarity_DistanceFieldEffectFlag) { flags |= d->fRandom->nextBool() ? kScaleOnly_DistanceFieldEffectFlag : 0; } SkMatrix localMatrix = GrTest::TestMatrix(d->fRandom); #ifdef SK_GAMMA_APPLY_TO_A8 float lum = d->fRandom->nextF(); #endif return GrDistanceFieldA8TextGeoProc::Make(proxies, 1, samplerState, #ifdef SK_GAMMA_APPLY_TO_A8 lum, #endif flags, localMatrix); } #endif /////////////////////////////////////////////////////////////////////////////// class GrGLDistanceFieldPathGeoProc : public GrGLSLGeometryProcessor { public: GrGLDistanceFieldPathGeoProc() : fMatrix(SkMatrix::InvalidMatrix()) , fAtlasSize({0,0}) { } void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{ const GrDistanceFieldPathGeoProc& dfPathEffect = args.fGP.cast(); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; // emit attributes varyingHandler->emitAttributes(dfPathEffect); const char* atlasSizeInvName; fAtlasSizeInvUniform = uniformHandler->addUniform(kVertex_GrShaderFlag, kFloat2_GrSLType, kHigh_GrSLPrecision, "AtlasSizeInv", &atlasSizeInvName); GrGLSLVarying uv(kFloat2_GrSLType); GrSLType texIdxType = args.fShaderCaps->integerSupport() ? kInt_GrSLType : kFloat_GrSLType; GrGLSLVarying texIdx(texIdxType); GrGLSLVarying st(kFloat2_GrSLType); append_index_uv_varyings(args, dfPathEffect.inTextureCoords().name(), atlasSizeInvName, &uv, &texIdx, &st); // setup pass through color varyingHandler->addPassThroughAttribute(dfPathEffect.inColor(), args.fOutputColor); if (dfPathEffect.matrix().hasPerspective()) { // Setup position this->writeOutputPosition(vertBuilder, uniformHandler, gpArgs, dfPathEffect.inPosition().name(), dfPathEffect.matrix(), &fMatrixUniform); // emit transforms this->emitTransforms(vertBuilder, varyingHandler, uniformHandler, dfPathEffect.inPosition().asShaderVar(), args.fFPCoordTransformHandler); } else { // Setup position this->writeOutputPosition(vertBuilder, gpArgs, dfPathEffect.inPosition().name()); // emit transforms this->emitTransforms(vertBuilder, varyingHandler, uniformHandler, dfPathEffect.inPosition().asShaderVar(), dfPathEffect.matrix(), args.fFPCoordTransformHandler); } // Use highp to work around aliasing issues fragBuilder->codeAppendf("float2 uv = %s;", uv.fsIn()); fragBuilder->codeAppend("half4 texColor;"); append_multitexture_lookup(args, dfPathEffect.numTextureSamplers(), texIdx, "uv", "texColor"); fragBuilder->codeAppend("half distance = " SK_DistanceFieldMultiplier "*(texColor.r - " SK_DistanceFieldThreshold ");"); fragBuilder->codeAppend("half afwidth;"); bool isUniformScale = (dfPathEffect.getFlags() & kUniformScale_DistanceFieldEffectMask) == kUniformScale_DistanceFieldEffectMask; bool isSimilarity = SkToBool(dfPathEffect.getFlags() & kSimilarity_DistanceFieldEffectFlag); bool isGammaCorrect = SkToBool(dfPathEffect.getFlags() & kGammaCorrect_DistanceFieldEffectFlag); if (isUniformScale) { // For uniform scale, we adjust for the effect of the transformation on the distance // by using the length of the gradient of the t coordinate in the y direction. // We use st coordinates to ensure we're mapping 1:1 from texel space to pixel space. // this gives us a smooth step across approximately one fragment #ifdef SK_VULKAN fragBuilder->codeAppendf("afwidth = abs(" SK_DistanceFieldAAFactor "*dFdx(%s.x));", st.fsIn()); #else // We use the y gradient because there is a bug in the Mali 400 in the x direction. fragBuilder->codeAppendf("afwidth = abs(" SK_DistanceFieldAAFactor "*dFdy(%s.y));", st.fsIn()); #endif } else if (isSimilarity) { // For similarity transform, we adjust the effect of the transformation on the distance // by using the length of the gradient of the texture coordinates. We use st coordinates // to ensure we're mapping 1:1 from texel space to pixel space. // this gives us a smooth step across approximately one fragment #ifdef SK_VULKAN fragBuilder->codeAppendf("half st_grad_len = length(dFdx(%s));", st.fsIn()); #else // We use the y gradient because there is a bug in the Mali 400 in the x direction. fragBuilder->codeAppendf("half st_grad_len = length(dFdy(%s));", st.fsIn()); #endif fragBuilder->codeAppend("afwidth = abs(" SK_DistanceFieldAAFactor "*st_grad_len);"); } else { // For general transforms, to determine the amount of correction we multiply a unit // vector pointing along the SDF gradient direction by the Jacobian of the st coords // (which is the inverse transform for this fragment) and take the length of the result. fragBuilder->codeAppend("half2 dist_grad = half2(dFdx(distance), dFdy(distance));"); // the length of the gradient may be 0, so we need to check for this // this also compensates for the Adreno, which likes to drop tiles on division by 0 fragBuilder->codeAppend("half dg_len2 = dot(dist_grad, dist_grad);"); fragBuilder->codeAppend("if (dg_len2 < 0.0001) {"); fragBuilder->codeAppend("dist_grad = half2(0.7071, 0.7071);"); fragBuilder->codeAppend("} else {"); fragBuilder->codeAppend("dist_grad = dist_grad*inversesqrt(dg_len2);"); fragBuilder->codeAppend("}"); fragBuilder->codeAppendf("half2 Jdx = dFdx(%s);", st.fsIn()); fragBuilder->codeAppendf("half2 Jdy = dFdy(%s);", st.fsIn()); fragBuilder->codeAppend("half2 grad = half2(dist_grad.x*Jdx.x + dist_grad.y*Jdy.x,"); fragBuilder->codeAppend(" dist_grad.x*Jdx.y + dist_grad.y*Jdy.y);"); // this gives us a smooth step across approximately one fragment fragBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*length(grad);"); } // The smoothstep falloff compensates for the non-linear sRGB response curve. If we are // doing gamma-correct rendering (to an sRGB or F16 buffer), then we actually want distance // mapped linearly to coverage, so use a linear step: if (isGammaCorrect) { fragBuilder->codeAppend( "half val = clamp((distance + afwidth) / (2.0 * afwidth), 0.0, 1.0);"); } else { fragBuilder->codeAppend("half val = smoothstep(-afwidth, afwidth, distance);"); } fragBuilder->codeAppendf("%s = half4(val);", args.fOutputCoverage); } void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& proc, FPCoordTransformIter&& transformIter) override { const GrDistanceFieldPathGeoProc& dfpgp = proc.cast(); if (dfpgp.matrix().hasPerspective() && !fMatrix.cheapEqualTo(dfpgp.matrix())) { fMatrix = dfpgp.matrix(); float matrix[3 * 3]; GrGLSLGetMatrix<3>(matrix, fMatrix); pdman.setMatrix3f(fMatrixUniform, matrix); } SkASSERT(dfpgp.numTextureSamplers() >= 1); GrTexture* atlas = dfpgp.textureSampler(0).peekTexture(); SkASSERT(atlas && SkIsPow2(atlas->width()) && SkIsPow2(atlas->height())); if (fAtlasSize.fWidth != atlas->width() || fAtlasSize.fHeight != atlas->height()) { fAtlasSize.set(atlas->width(), atlas->height()); pdman.set2f(fAtlasSizeInvUniform, 1.0f / atlas->width(), 1.0f / atlas->height()); } if (dfpgp.matrix().hasPerspective()) { this->setTransformDataHelper(SkMatrix::I(), pdman, &transformIter); } else { this->setTransformDataHelper(dfpgp.matrix(), pdman, &transformIter); } } static inline void GenKey(const GrGeometryProcessor& gp, const GrShaderCaps&, GrProcessorKeyBuilder* b) { const GrDistanceFieldPathGeoProc& dfTexEffect = gp.cast(); uint32_t key = dfTexEffect.getFlags(); key |= ComputePosKey(dfTexEffect.matrix()) << 16; b->add32(key); b->add32(dfTexEffect.matrix().hasPerspective()); b->add32(dfTexEffect.numTextureSamplers()); } private: SkMatrix fMatrix; // view matrix if perspective, local matrix otherwise UniformHandle fMatrixUniform; SkISize fAtlasSize; UniformHandle fAtlasSizeInvUniform; typedef GrGLSLGeometryProcessor INHERITED; }; /////////////////////////////////////////////////////////////////////////////// constexpr GrPrimitiveProcessor::Attribute GrDistanceFieldPathGeoProc::kInPosition; constexpr GrPrimitiveProcessor::Attribute GrDistanceFieldPathGeoProc::kInColor; constexpr GrPrimitiveProcessor::Attribute GrDistanceFieldPathGeoProc::kInTextureCoords; GrDistanceFieldPathGeoProc::GrDistanceFieldPathGeoProc(const SkMatrix& matrix, const sk_sp* proxies, int numProxies, const GrSamplerState& params, uint32_t flags) : INHERITED(kGrDistanceFieldPathGeoProc_ClassID) , fMatrix(matrix) , fFlags(flags & kNonLCD_DistanceFieldEffectMask) { SkASSERT(numProxies <= kMaxTextures); SkASSERT(!(flags & ~kNonLCD_DistanceFieldEffectMask)); this->setVertexAttributeCnt(3); for (int i = 0; i < numProxies; ++i) { SkASSERT(proxies[i]); fTextureSamplers[i].reset(std::move(proxies[i]), params); } this->setTextureSamplerCnt(numProxies); } void GrDistanceFieldPathGeoProc::addNewProxies(const sk_sp* proxies, int numProxies, const GrSamplerState& params) { SkASSERT(numProxies <= kMaxTextures); for (int i = 0; i < numProxies; ++i) { SkASSERT(proxies[i]); if (!fTextureSamplers[i].isInitialized()) { fTextureSamplers[i].reset(std::move(proxies[i]), params); } } this->setTextureSamplerCnt(numProxies); } void GrDistanceFieldPathGeoProc::getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { GrGLDistanceFieldPathGeoProc::GenKey(*this, caps, b); } GrGLSLPrimitiveProcessor* GrDistanceFieldPathGeoProc::createGLSLInstance(const GrShaderCaps&) const { return new GrGLDistanceFieldPathGeoProc(); } const GrPrimitiveProcessor::Attribute& GrDistanceFieldPathGeoProc::onVertexAttribute(int i) const { return IthAttribute(i, kInPosition, kInColor, kInTextureCoords); } /////////////////////////////////////////////////////////////////////////////// GR_DEFINE_GEOMETRY_PROCESSOR_TEST(GrDistanceFieldPathGeoProc); #if GR_TEST_UTILS sk_sp GrDistanceFieldPathGeoProc::TestCreate(GrProcessorTestData* d) { int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx : GrProcessorUnitTest::kAlphaTextureIdx; sk_sp proxies[kMaxTextures] = { d->textureProxy(texIdx), nullptr, nullptr, nullptr }; GrSamplerState::WrapMode wrapModes[2]; GrTest::TestWrapModes(d->fRandom, wrapModes); GrSamplerState samplerState(wrapModes, d->fRandom->nextBool() ? GrSamplerState::Filter::kBilerp : GrSamplerState::Filter::kNearest); uint32_t flags = 0; flags |= d->fRandom->nextBool() ? kSimilarity_DistanceFieldEffectFlag : 0; if (flags & kSimilarity_DistanceFieldEffectFlag) { flags |= d->fRandom->nextBool() ? kScaleOnly_DistanceFieldEffectFlag : 0; } return GrDistanceFieldPathGeoProc::Make(GrTest::TestMatrix(d->fRandom), proxies, 1, samplerState, flags); } #endif /////////////////////////////////////////////////////////////////////////////// class GrGLDistanceFieldLCDTextGeoProc : public GrGLSLGeometryProcessor { public: GrGLDistanceFieldLCDTextGeoProc() : fAtlasSize({0, 0}) { fDistanceAdjust = GrDistanceFieldLCDTextGeoProc::DistanceAdjust::Make(1.0f, 1.0f, 1.0f); } void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{ const GrDistanceFieldLCDTextGeoProc& dfTexEffect = args.fGP.cast(); GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; // emit attributes varyingHandler->emitAttributes(dfTexEffect); const char* atlasSizeInvName; fAtlasSizeInvUniform = uniformHandler->addUniform(kVertex_GrShaderFlag, kFloat2_GrSLType, kHigh_GrSLPrecision, "AtlasSizeInv", &atlasSizeInvName); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; // setup pass through color varyingHandler->addPassThroughAttribute(dfTexEffect.inColor(), args.fOutputColor); // Setup position gpArgs->fPositionVar = dfTexEffect.inPosition().asShaderVar(); // emit transforms this->emitTransforms(vertBuilder, varyingHandler, uniformHandler, dfTexEffect.inPosition().asShaderVar(), dfTexEffect.localMatrix(), args.fFPCoordTransformHandler); // set up varyings GrGLSLVarying uv(kFloat2_GrSLType); GrSLType texIdxType = args.fShaderCaps->integerSupport() ? kInt_GrSLType : kFloat_GrSLType; GrGLSLVarying texIdx(texIdxType); GrGLSLVarying st(kFloat2_GrSLType); append_index_uv_varyings(args, dfTexEffect.inTextureCoords().name(), atlasSizeInvName, &uv, &texIdx, &st); GrGLSLVarying delta(kFloat_GrSLType); varyingHandler->addVarying("Delta", &delta); if (dfTexEffect.getFlags() & kBGR_DistanceFieldEffectFlag) { vertBuilder->codeAppendf("%s = -%s.x/3.0;", delta.vsOut(), atlasSizeInvName); } else { vertBuilder->codeAppendf("%s = %s.x/3.0;", delta.vsOut(), atlasSizeInvName); } // add frag shader code bool isUniformScale = (dfTexEffect.getFlags() & kUniformScale_DistanceFieldEffectMask) == kUniformScale_DistanceFieldEffectMask; bool isSimilarity = SkToBool(dfTexEffect.getFlags() & kSimilarity_DistanceFieldEffectFlag); bool isGammaCorrect = SkToBool(dfTexEffect.getFlags() & kGammaCorrect_DistanceFieldEffectFlag); // create LCD offset adjusted by inverse of transform // Use highp to work around aliasing issues fragBuilder->codeAppendf("float2 uv = %s;\n", uv.fsIn()); if (isUniformScale) { #ifdef SK_VULKAN fragBuilder->codeAppendf("half st_grad_len = abs(dFdx(%s.x));", st.fsIn()); #else // We use the y gradient because there is a bug in the Mali 400 in the x direction. fragBuilder->codeAppendf("half st_grad_len = abs(dFdy(%s.y));", st.fsIn()); #endif fragBuilder->codeAppendf("half2 offset = half2(st_grad_len*%s, 0.0);", delta.fsIn()); } else if (isSimilarity) { // For a similarity matrix with rotation, the gradient will not be aligned // with the texel coordinate axes, so we need to calculate it. #ifdef SK_VULKAN fragBuilder->codeAppendf("half2 st_grad = dFdx(%s);", st.fsIn()); fragBuilder->codeAppendf("half2 offset = %s*st_grad;", delta.fsIn()); #else // We use dFdy because of a Mali 400 bug, and rotate -90 degrees to // get the gradient in the x direction. fragBuilder->codeAppendf("half2 st_grad = dFdy(%s);", st.fsIn()); fragBuilder->codeAppendf("half2 offset = %s*half2(st_grad.y, -st_grad.x);", delta.fsIn()); #endif fragBuilder->codeAppend("half st_grad_len = length(st_grad);"); } else { fragBuilder->codeAppendf("half2 st = %s;\n", st.fsIn()); fragBuilder->codeAppend("half2 Jdx = dFdx(st);"); fragBuilder->codeAppend("half2 Jdy = dFdy(st);"); fragBuilder->codeAppendf("half2 offset = %s*Jdx;", delta.fsIn()); } // sample the texture by index fragBuilder->codeAppend("half4 texColor;"); append_multitexture_lookup(args, dfTexEffect.numTextureSamplers(), texIdx, "uv", "texColor"); // green is distance to uv center fragBuilder->codeAppend("half3 distance;"); fragBuilder->codeAppend("distance.y = texColor.r;"); // red is distance to left offset fragBuilder->codeAppend("half2 uv_adjusted = uv - offset;"); append_multitexture_lookup(args, dfTexEffect.numTextureSamplers(), texIdx, "uv_adjusted", "texColor"); fragBuilder->codeAppend("distance.x = texColor.r;"); // blue is distance to right offset fragBuilder->codeAppend("uv_adjusted = uv + offset;"); append_multitexture_lookup(args, dfTexEffect.numTextureSamplers(), texIdx, "uv_adjusted", "texColor"); fragBuilder->codeAppend("distance.z = texColor.r;"); fragBuilder->codeAppend("distance = " "half3(" SK_DistanceFieldMultiplier ")*(distance - half3(" SK_DistanceFieldThreshold"));"); // adjust width based on gamma const char* distanceAdjustUniName = nullptr; fDistanceAdjustUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf3_GrSLType, "DistanceAdjust", &distanceAdjustUniName); fragBuilder->codeAppendf("distance -= %s;", distanceAdjustUniName); // To be strictly correct, we should compute the anti-aliasing factor separately // for each color component. However, this is only important when using perspective // transformations, and even then using a single factor seems like a reasonable // trade-off between quality and speed. fragBuilder->codeAppend("half afwidth;"); if (isSimilarity) { // For similarity transform (uniform scale-only is a subset of this), we adjust for the // effect of the transformation on the distance by using the length of the gradient of // the texture coordinates. We use st coordinates to ensure we're mapping 1:1 from texel // space to pixel space. // this gives us a smooth step across approximately one fragment fragBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*st_grad_len;"); } else { // For general transforms, to determine the amount of correction we multiply a unit // vector pointing along the SDF gradient direction by the Jacobian of the st coords // (which is the inverse transform for this fragment) and take the length of the result. fragBuilder->codeAppend("half2 dist_grad = half2(dFdx(distance.r), dFdy(distance.r));"); // the length of the gradient may be 0, so we need to check for this // this also compensates for the Adreno, which likes to drop tiles on division by 0 fragBuilder->codeAppend("half dg_len2 = dot(dist_grad, dist_grad);"); fragBuilder->codeAppend("if (dg_len2 < 0.0001) {"); fragBuilder->codeAppend("dist_grad = half2(0.7071, 0.7071);"); fragBuilder->codeAppend("} else {"); fragBuilder->codeAppend("dist_grad = dist_grad*inversesqrt(dg_len2);"); fragBuilder->codeAppend("}"); fragBuilder->codeAppend("half2 grad = half2(dist_grad.x*Jdx.x + dist_grad.y*Jdy.x,"); fragBuilder->codeAppend(" dist_grad.x*Jdx.y + dist_grad.y*Jdy.y);"); // this gives us a smooth step across approximately one fragment fragBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*length(grad);"); } // The smoothstep falloff compensates for the non-linear sRGB response curve. If we are // doing gamma-correct rendering (to an sRGB or F16 buffer), then we actually want distance // mapped linearly to coverage, so use a linear step: if (isGammaCorrect) { fragBuilder->codeAppendf("%s = " "half4(clamp((distance + half3(afwidth)) / half3(2.0 * afwidth), 0.0, 1.0), 1.0);", args.fOutputCoverage); } else { fragBuilder->codeAppendf( "%s = half4(smoothstep(half3(-afwidth), half3(afwidth), distance), 1.0);", args.fOutputCoverage); } } void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& processor, FPCoordTransformIter&& transformIter) override { SkASSERT(fDistanceAdjustUni.isValid()); const GrDistanceFieldLCDTextGeoProc& dflcd = processor.cast(); GrDistanceFieldLCDTextGeoProc::DistanceAdjust wa = dflcd.getDistanceAdjust(); if (wa != fDistanceAdjust) { pdman.set3f(fDistanceAdjustUni, wa.fR, wa.fG, wa.fB); fDistanceAdjust = wa; } SkASSERT(dflcd.numTextureSamplers() >= 1); GrTexture* atlas = dflcd.textureSampler(0).peekTexture(); SkASSERT(atlas && SkIsPow2(atlas->width()) && SkIsPow2(atlas->height())); if (fAtlasSize.fWidth != atlas->width() || fAtlasSize.fHeight != atlas->height()) { fAtlasSize.set(atlas->width(), atlas->height()); pdman.set2f(fAtlasSizeInvUniform, 1.0f / atlas->width(), 1.0f / atlas->height()); } this->setTransformDataHelper(dflcd.localMatrix(), pdman, &transformIter); } static inline void GenKey(const GrGeometryProcessor& gp, const GrShaderCaps&, GrProcessorKeyBuilder* b) { const GrDistanceFieldLCDTextGeoProc& dfTexEffect = gp.cast(); uint32_t key = dfTexEffect.getFlags(); b->add32(key); b->add32(dfTexEffect.numTextureSamplers()); } private: GrDistanceFieldLCDTextGeoProc::DistanceAdjust fDistanceAdjust; UniformHandle fDistanceAdjustUni; SkISize fAtlasSize; UniformHandle fAtlasSizeInvUniform; typedef GrGLSLGeometryProcessor INHERITED; }; /////////////////////////////////////////////////////////////////////////////// constexpr GrPrimitiveProcessor::Attribute GrDistanceFieldLCDTextGeoProc::kInColor; constexpr GrPrimitiveProcessor::Attribute GrDistanceFieldLCDTextGeoProc::kInTextureCoords; GrDistanceFieldLCDTextGeoProc::GrDistanceFieldLCDTextGeoProc(const sk_sp* proxies, int numProxies, const GrSamplerState& params, DistanceAdjust distanceAdjust, uint32_t flags, const SkMatrix& localMatrix) : INHERITED(kGrDistanceFieldLCDTextGeoProc_ClassID) , fLocalMatrix(localMatrix) , fDistanceAdjust(distanceAdjust) , fFlags(flags & kLCD_DistanceFieldEffectMask) { SkASSERT(numProxies <= kMaxTextures); SkASSERT(!(flags & ~kLCD_DistanceFieldEffectMask) && (flags & kUseLCD_DistanceFieldEffectFlag)); if (fFlags & kPerspective_DistanceFieldEffectFlag) { fInPosition = {"inPosition", kFloat3_GrVertexAttribType}; } else { fInPosition = {"inPosition", kFloat2_GrVertexAttribType}; } this->setVertexAttributeCnt(3); for (int i = 0; i < numProxies; ++i) { SkASSERT(proxies[i]); fTextureSamplers[i].reset(std::move(proxies[i]), params); } this->setTextureSamplerCnt(numProxies); } void GrDistanceFieldLCDTextGeoProc::addNewProxies(const sk_sp* proxies, int numProxies, const GrSamplerState& params) { SkASSERT(numProxies <= kMaxTextures); for (int i = 0; i < numProxies; ++i) { SkASSERT(proxies[i]); if (!fTextureSamplers[i].isInitialized()) { fTextureSamplers[i].reset(std::move(proxies[i]), params); } } this->setTextureSamplerCnt(numProxies); } void GrDistanceFieldLCDTextGeoProc::getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { GrGLDistanceFieldLCDTextGeoProc::GenKey(*this, caps, b); } GrGLSLPrimitiveProcessor* GrDistanceFieldLCDTextGeoProc::createGLSLInstance(const GrShaderCaps&) const { return new GrGLDistanceFieldLCDTextGeoProc(); } const GrPrimitiveProcessor::Attribute& GrDistanceFieldLCDTextGeoProc::onVertexAttribute( int i) const { return IthAttribute(i, fInPosition, kInColor, kInTextureCoords); } /////////////////////////////////////////////////////////////////////////////// GR_DEFINE_GEOMETRY_PROCESSOR_TEST(GrDistanceFieldLCDTextGeoProc); #if GR_TEST_UTILS sk_sp GrDistanceFieldLCDTextGeoProc::TestCreate(GrProcessorTestData* d) { int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx : GrProcessorUnitTest::kAlphaTextureIdx; sk_sp proxies[kMaxTextures] = { d->textureProxy(texIdx), nullptr, nullptr, nullptr }; GrSamplerState::WrapMode wrapModes[2]; GrTest::TestWrapModes(d->fRandom, wrapModes); GrSamplerState samplerState(wrapModes, d->fRandom->nextBool() ? GrSamplerState::Filter::kBilerp : GrSamplerState::Filter::kNearest); DistanceAdjust wa = { 0.0f, 0.1f, -0.1f }; uint32_t flags = kUseLCD_DistanceFieldEffectFlag; flags |= d->fRandom->nextBool() ? kSimilarity_DistanceFieldEffectFlag : 0; if (flags & kSimilarity_DistanceFieldEffectFlag) { flags |= d->fRandom->nextBool() ? kScaleOnly_DistanceFieldEffectFlag : 0; } flags |= d->fRandom->nextBool() ? kBGR_DistanceFieldEffectFlag : 0; SkMatrix localMatrix = GrTest::TestMatrix(d->fRandom); return GrDistanceFieldLCDTextGeoProc::Make(proxies, 1, samplerState, wa, flags, localMatrix); } #endif