/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrConfigConversionEffect.h" #include "GrContext.h" #include "GrRenderTargetContext.h" #include "GrInvariantOutput.h" #include "GrSimpleTextureEffect.h" #include "SkMatrix.h" #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "../private/GrGLSL.h" class GrGLConfigConversionEffect : public GrGLSLFragmentProcessor { public: void emitCode(EmitArgs& args) override { const GrConfigConversionEffect& cce = args.fFp.cast(); const GrSwizzle& swizzle = cce.swizzle(); GrConfigConversionEffect::PMConversion pmConversion = cce.pmConversion(); // Using highp for GLES here in order to avoid some precision issues on specific GPUs. GrShaderVar tmpVar("tmpColor", kVec4f_GrSLType, 0, kHigh_GrSLPrecision); SkString tmpDecl; tmpVar.appendDecl(args.fShaderCaps, &tmpDecl); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; fragBuilder->codeAppendf("%s;", tmpDecl.c_str()); fragBuilder->codeAppendf("%s = ", tmpVar.c_str()); fragBuilder->appendTextureLookup(args.fTexSamplers[0], args.fTransformedCoords[0].c_str(), args.fTransformedCoords[0].getType()); fragBuilder->codeAppend(";"); if (GrConfigConversionEffect::kNone_PMConversion == pmConversion) { SkASSERT(GrSwizzle::RGBA() != swizzle); fragBuilder->codeAppendf("%s = %s.%s;", args.fOutputColor, tmpVar.c_str(), swizzle.c_str()); } else { switch (pmConversion) { case GrConfigConversionEffect::kMulByAlpha_RoundUp_PMConversion: fragBuilder->codeAppendf( "%s = vec4(ceil(%s.rgb * %s.a * 255.0) / 255.0, %s.a);", tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str()); break; case GrConfigConversionEffect::kMulByAlpha_RoundDown_PMConversion: // Add a compensation(0.001) here to avoid the side effect of the floor operation. // In Intel GPUs, the integer value converted from floor(%s.r * 255.0) / 255.0 // is less than the integer value converted from %s.r by 1 when the %s.r is // converted from the integer value 2^n, such as 1, 2, 4, 8, etc. fragBuilder->codeAppendf( "%s = vec4(floor(%s.rgb * %s.a * 255.0 + 0.001) / 255.0, %s.a);", tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str()); break; case GrConfigConversionEffect::kDivByAlpha_RoundUp_PMConversion: fragBuilder->codeAppendf( "%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(ceil(%s.rgb / %s.a * 255.0) / 255.0, %s.a);", tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str()); break; case GrConfigConversionEffect::kDivByAlpha_RoundDown_PMConversion: fragBuilder->codeAppendf( "%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(floor(%s.rgb / %s.a * 255.0) / 255.0, %s.a);", tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str()); break; default: SkFAIL("Unknown conversion op."); break; } fragBuilder->codeAppendf("%s = %s.%s;", args.fOutputColor, tmpVar.c_str(), swizzle.c_str()); } SkString modulate; GrGLSLMulVarBy4f(&modulate, args.fOutputColor, args.fInputColor); fragBuilder->codeAppend(modulate.c_str()); } static inline void GenKey(const GrProcessor& processor, const GrShaderCaps&, GrProcessorKeyBuilder* b) { const GrConfigConversionEffect& cce = processor.cast(); uint32_t key = (cce.swizzle().asKey()) | (cce.pmConversion() << 16); b->add32(key); } private: typedef GrGLSLFragmentProcessor INHERITED; }; /////////////////////////////////////////////////////////////////////////////// GrConfigConversionEffect::GrConfigConversionEffect(GrTexture* texture, const GrSwizzle& swizzle, PMConversion pmConversion, const SkMatrix& matrix) : INHERITED(texture, nullptr, matrix, kNone_OptimizationFlags) , fSwizzle(swizzle) , fPMConversion(pmConversion) { this->initClassID(); // We expect to get here with non-BGRA/RGBA only if we're doing not doing a premul/unpremul // conversion. SkASSERT((kRGBA_8888_GrPixelConfig == texture->config() || kBGRA_8888_GrPixelConfig == texture->config()) || kNone_PMConversion == pmConversion); // Why did we pollute our texture cache instead of using a GrSingleTextureEffect? SkASSERT(swizzle != GrSwizzle::RGBA() || kNone_PMConversion != pmConversion); } GrConfigConversionEffect::GrConfigConversionEffect(GrContext* context, sk_sp proxy, const GrSwizzle& swizzle, PMConversion pmConversion, const SkMatrix& matrix) : INHERITED(context, kNone_OptimizationFlags, proxy, nullptr, matrix) , fSwizzle(swizzle) , fPMConversion(pmConversion) { this->initClassID(); // We expect to get here with non-BGRA/RGBA only if we're doing not doing a premul/unpremul // conversion. SkASSERT((kRGBA_8888_GrPixelConfig == proxy->config() || kBGRA_8888_GrPixelConfig == proxy->config()) || kNone_PMConversion == pmConversion); // Why did we pollute our texture cache instead of using a GrSingleTextureEffect? SkASSERT(swizzle != GrSwizzle::RGBA() || kNone_PMConversion != pmConversion); } bool GrConfigConversionEffect::onIsEqual(const GrFragmentProcessor& s) const { const GrConfigConversionEffect& other = s.cast(); return other.fSwizzle == fSwizzle && other.fPMConversion == fPMConversion; } void GrConfigConversionEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const { this->updateInvariantOutputForModulation(inout); } /////////////////////////////////////////////////////////////////////////////// GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrConfigConversionEffect); #if !defined(__clang__) && _MSC_FULL_VER >= 190024213 // Work around VS 2015 Update 3 optimizer bug that causes internal compiler error //https://connect.microsoft.com/VisualStudio/feedback/details/3100520/internal-compiler-error #pragma optimize("t", off) #endif #if GR_TEST_UTILS sk_sp GrConfigConversionEffect::TestCreate(GrProcessorTestData* d) { PMConversion pmConv = static_cast(d->fRandom->nextULessThan(kPMConversionCnt)); GrSwizzle swizzle; do { swizzle = GrSwizzle::CreateRandom(d->fRandom); } while (pmConv == kNone_PMConversion && swizzle == GrSwizzle::RGBA()); return sk_sp(new GrConfigConversionEffect( d->context(), d->textureProxy(GrProcessorUnitTest::kSkiaPMTextureIdx), swizzle, pmConv, GrTest::TestMatrix(d->fRandom))); } #endif #if !defined(__clang__) && _MSC_FULL_VER >= 190024213 // Restore optimization settings. #pragma optimize("", on) #endif /////////////////////////////////////////////////////////////////////////////// void GrConfigConversionEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { GrGLConfigConversionEffect::GenKey(*this, caps, b); } GrGLSLFragmentProcessor* GrConfigConversionEffect::onCreateGLSLInstance() const { return new GrGLConfigConversionEffect(); } void GrConfigConversionEffect::TestForPreservingPMConversions(GrContext* context, PMConversion* pmToUPMRule, PMConversion* upmToPMRule) { *pmToUPMRule = kNone_PMConversion; *upmToPMRule = kNone_PMConversion; static constexpr int kSize = 256; static constexpr GrPixelConfig kConfig = kRGBA_8888_GrPixelConfig; SkAutoTMalloc data(kSize * kSize * 3); uint32_t* srcData = data.get(); uint32_t* firstRead = data.get() + kSize * kSize; uint32_t* secondRead = data.get() + 2 * kSize * kSize; // Fill with every possible premultiplied A, color channel value. There will be 256-y duplicate // values in row y. We set r,g, and b to the same value since they are handled identically. for (int y = 0; y < kSize; ++y) { for (int x = 0; x < kSize; ++x) { uint8_t* color = reinterpret_cast(&srcData[kSize*y + x]); color[3] = y; color[2] = SkTMin(x, y); color[1] = SkTMin(x, y); color[0] = SkTMin(x, y); } } const SkImageInfo ii = SkImageInfo::Make(kSize, kSize, kRGBA_8888_SkColorType, kPremul_SkAlphaType); sk_sp readRTC(context->makeRenderTargetContext(SkBackingFit::kExact, kSize, kSize, kConfig, nullptr)); sk_sp tempRTC(context->makeRenderTargetContext(SkBackingFit::kExact, kSize, kSize, kConfig, nullptr)); if (!readRTC || !tempRTC) { return; } GrSurfaceDesc desc; desc.fWidth = kSize; desc.fHeight = kSize; desc.fConfig = kConfig; sk_sp dataProxy = GrSurfaceProxy::MakeDeferred(*context->caps(), context->textureProvider(), desc, SkBudgeted::kYes, data, 0); if (!dataProxy || !dataProxy->asTextureProxy()) { return; } static const PMConversion kConversionRules[][2] = { {kDivByAlpha_RoundDown_PMConversion, kMulByAlpha_RoundUp_PMConversion}, {kDivByAlpha_RoundUp_PMConversion, kMulByAlpha_RoundDown_PMConversion}, }; bool failed = true; for (size_t i = 0; i < SK_ARRAY_COUNT(kConversionRules) && failed; ++i) { *pmToUPMRule = kConversionRules[i][0]; *upmToPMRule = kConversionRules[i][1]; static const SkRect kDstRect = SkRect::MakeIWH(kSize, kSize); static const SkRect kSrcRect = SkRect::MakeIWH(kSize, kSize); // We do a PM->UPM draw from dataTex to readTex and read the data. Then we do a UPM->PM draw // from readTex to tempTex followed by a PM->UPM draw to readTex and finally read the data. // We then verify that two reads produced the same values. if (!readRTC->asTexture()) { continue; } GrPaint paint1; GrPaint paint2; GrPaint paint3; sk_sp pmToUPM1(new GrConfigConversionEffect( context, sk_ref_sp(dataProxy->asTextureProxy()), GrSwizzle::RGBA(), *pmToUPMRule, SkMatrix::I())); sk_sp upmToPM(new GrConfigConversionEffect( context, readRTC->asTextureProxyRef(), GrSwizzle::RGBA(), *upmToPMRule, SkMatrix::I())); sk_sp pmToUPM2(new GrConfigConversionEffect( context, tempRTC->asTextureProxyRef(), GrSwizzle::RGBA(), *pmToUPMRule, SkMatrix::I())); paint1.addColorFragmentProcessor(std::move(pmToUPM1)); paint1.setPorterDuffXPFactory(SkBlendMode::kSrc); readRTC->fillRectToRect(GrNoClip(), std::move(paint1), GrAA::kNo, SkMatrix::I(), kDstRect, kSrcRect); if (!readRTC->readPixels(ii, firstRead, 0, 0, 0)) { continue; } paint2.addColorFragmentProcessor(std::move(upmToPM)); paint2.setPorterDuffXPFactory(SkBlendMode::kSrc); tempRTC->fillRectToRect(GrNoClip(), std::move(paint2), GrAA::kNo, SkMatrix::I(), kDstRect, kSrcRect); paint3.addColorFragmentProcessor(std::move(pmToUPM2)); paint3.setPorterDuffXPFactory(SkBlendMode::kSrc); readRTC->fillRectToRect(GrNoClip(), std::move(paint3), GrAA::kNo, SkMatrix::I(), kDstRect, kSrcRect); if (!readRTC->readPixels(ii, secondRead, 0, 0, 0)) { continue; } failed = false; for (int y = 0; y < kSize && !failed; ++y) { for (int x = 0; x <= y; ++x) { if (firstRead[kSize * y + x] != secondRead[kSize * y + x]) { failed = true; break; } } } } if (failed) { *pmToUPMRule = kNone_PMConversion; *upmToPMRule = kNone_PMConversion; } } sk_sp GrConfigConversionEffect::Make(GrTexture* texture, const GrSwizzle& swizzle, PMConversion pmConversion, const SkMatrix& matrix) { if (swizzle == GrSwizzle::RGBA() && kNone_PMConversion == pmConversion) { // If we returned a GrConfigConversionEffect that was equivalent to a GrSimpleTextureEffect // then we may pollute our texture cache with redundant shaders. So in the case that no // conversions were requested we instead return a GrSimpleTextureEffect. return GrSimpleTextureEffect::Make(texture, nullptr, matrix); } else { if (kRGBA_8888_GrPixelConfig != texture->config() && kBGRA_8888_GrPixelConfig != texture->config() && kNone_PMConversion != pmConversion) { // The PM conversions assume colors are 0..255 return nullptr; } return sk_sp( new GrConfigConversionEffect(texture, swizzle, pmConversion, matrix)); } } sk_sp GrConfigConversionEffect::Make(GrContext* context, sk_sp proxy, const GrSwizzle& swizzle, PMConversion pmConversion, const SkMatrix& matrix) { if (swizzle == GrSwizzle::RGBA() && kNone_PMConversion == pmConversion) { // If we returned a GrConfigConversionEffect that was equivalent to a GrSimpleTextureEffect // then we may pollute our texture cache with redundant shaders. So in the case that no // conversions were requested we instead return a GrSimpleTextureEffect. return GrSimpleTextureEffect::Make(context, std::move(proxy), nullptr, matrix); } else { if (kRGBA_8888_GrPixelConfig != proxy->config() && kBGRA_8888_GrPixelConfig != proxy->config() && kNone_PMConversion != pmConversion) { // The PM conversions assume colors are 0..255 return nullptr; } return sk_sp( new GrConfigConversionEffect(context, std::move(proxy), swizzle, pmConversion, matrix)); } }