/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrConfigConversionEffect.h" #include "gl/GrGLProgramStage.h" class GrGLConfigConversionEffect : public GrGLLegacyProgramStage { public: GrGLConfigConversionEffect(const GrProgramStageFactory& factory, const GrEffect& s) : INHERITED (factory) { const GrConfigConversionEffect& effect = static_cast(s); fSwapRedAndBlue = effect.swapsRedAndBlue(); fPMConversion = effect.pmConversion(); } virtual void emitVS(GrGLShaderBuilder* builder, const char* vertexCoords) SK_OVERRIDE { } virtual void emitFS(GrGLShaderBuilder* builder, const char* outputColor, const char* inputColor, const TextureSamplerArray& samplers) SK_OVERRIDE { builder->fFSCode.appendf("\t\t%s = ", outputColor); builder->appendTextureLookup(&builder->fFSCode, samplers[0]); builder->fFSCode.append(";\n"); if (GrConfigConversionEffect::kNone_PMConversion == fPMConversion) { GrAssert(fSwapRedAndBlue); builder->fFSCode.appendf("\t%s = %s.bgra;\n", outputColor, outputColor); } else { const char* swiz = fSwapRedAndBlue ? "bgr" : "rgb"; switch (fPMConversion) { case GrConfigConversionEffect::kMulByAlpha_RoundUp_PMConversion: builder->fFSCode.appendf( "\t\t%s = vec4(ceil(%s.%s * %s.a * 255.0) / 255.0, %s.a);\n", outputColor, outputColor, swiz, outputColor, outputColor); break; case GrConfigConversionEffect::kMulByAlpha_RoundDown_PMConversion: builder->fFSCode.appendf( "\t\t%s = vec4(floor(%s.%s * %s.a * 255.0) / 255.0, %s.a);\n", outputColor, outputColor, swiz, outputColor, outputColor); break; case GrConfigConversionEffect::kDivByAlpha_RoundUp_PMConversion: builder->fFSCode.appendf("\t\t%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(ceil(%s.%s / %s.a * 255.0) / 255.0, %s.a);\n", outputColor, outputColor, outputColor, swiz, outputColor, outputColor); break; case GrConfigConversionEffect::kDivByAlpha_RoundDown_PMConversion: builder->fFSCode.appendf("\t\t%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(floor(%s.%s / %s.a * 255.0) / 255.0, %s.a);\n", outputColor, outputColor, outputColor, swiz, outputColor, outputColor); break; default: GrCrash("Unknown conversion op."); break; } } GrGLSLMulVarBy4f(&builder->fFSCode, 2, outputColor, inputColor); } static inline StageKey GenKey(const GrEffect& s, const GrGLCaps&) { const GrConfigConversionEffect& effect = static_cast(s); return static_cast(effect.swapsRedAndBlue()) | (effect.pmConversion() << 1); } private: bool fSwapRedAndBlue; GrConfigConversionEffect::PMConversion fPMConversion; typedef GrGLLegacyProgramStage INHERITED; }; /////////////////////////////////////////////////////////////////////////////// GrConfigConversionEffect::GrConfigConversionEffect(GrTexture* texture, bool swapRedAndBlue, PMConversion pmConversion) : GrSingleTextureEffect(texture) , fSwapRedAndBlue(swapRedAndBlue) , fPMConversion(pmConversion) { GrAssert(kRGBA_8888_GrPixelConfig == texture->config() || kBGRA_8888_GrPixelConfig == texture->config()); // Why did we pollute our texture cache instead of using a GrSingleTextureEffect? GrAssert(swapRedAndBlue || kNone_PMConversion != pmConversion); } const GrProgramStageFactory& GrConfigConversionEffect::getFactory() const { return GrTProgramStageFactory::getInstance(); } bool GrConfigConversionEffect::isEqual(const GrEffect& s) const { const GrConfigConversionEffect& other = static_cast(s); return other.fSwapRedAndBlue == fSwapRedAndBlue && other.fPMConversion == fPMConversion; } /////////////////////////////////////////////////////////////////////////////// GR_DEFINE_EFFECT_TEST(GrConfigConversionEffect); GrEffect* GrConfigConversionEffect::TestCreate(SkRandom* random, GrContext* context, GrTexture* textures[]) { PMConversion pmConv = static_cast(random->nextULessThan(kPMConversionCnt)); bool swapRB; if (kNone_PMConversion == pmConv) { swapRB = true; } else { swapRB = random->nextBool(); } return SkNEW_ARGS(GrConfigConversionEffect, (textures[GrEffectUnitTest::kSkiaPMTextureIdx], swapRB, pmConv)); } /////////////////////////////////////////////////////////////////////////////// void GrConfigConversionEffect::TestForPreservingPMConversions(GrContext* context, PMConversion* pmToUPMRule, PMConversion* upmToPMRule) { *pmToUPMRule = kNone_PMConversion; *upmToPMRule = kNone_PMConversion; SkAutoTMalloc data(256 * 256 * 3); uint32_t* srcData = data.get(); uint32_t* firstRead = data.get() + 256 * 256; uint32_t* secondRead = data.get() + 2 * 256 * 256; // Fill with every possible premultiplied A, color channel value. There will be 256-y duplicate // values in row y. We set r,g, and b to the same value since they are handled identically. for (int y = 0; y < 256; ++y) { for (int x = 0; x < 256; ++x) { uint8_t* color = reinterpret_cast(&srcData[256*y + x]); color[3] = y; color[2] = GrMin(x, y); color[1] = GrMin(x, y); color[0] = GrMin(x, y); } } GrTextureDesc desc; desc.fFlags = kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit; desc.fWidth = 256; desc.fHeight = 256; desc.fConfig = kRGBA_8888_GrPixelConfig; SkAutoTUnref readTex(context->createUncachedTexture(desc, NULL, 0)); if (!readTex.get()) { return; } SkAutoTUnref tempTex(context->createUncachedTexture(desc, NULL, 0)); if (!tempTex.get()) { return; } desc.fFlags = kNone_GrTextureFlags; SkAutoTUnref dataTex(context->createUncachedTexture(desc, data, 0)); if (!dataTex.get()) { return; } static const PMConversion kConversionRules[][2] = { {kDivByAlpha_RoundDown_PMConversion, kMulByAlpha_RoundUp_PMConversion}, {kDivByAlpha_RoundUp_PMConversion, kMulByAlpha_RoundDown_PMConversion}, }; GrContext::AutoWideOpenIdentityDraw awoid(context, NULL); bool failed = true; for (size_t i = 0; i < GR_ARRAY_COUNT(kConversionRules) && failed; ++i) { *pmToUPMRule = kConversionRules[i][0]; *upmToPMRule = kConversionRules[i][1]; static const GrRect kDstRect = GrRect::MakeWH(GrIntToScalar(256), GrIntToScalar(256)); static const GrRect kSrcRect = GrRect::MakeWH(GR_Scalar1, GR_Scalar1); // We do a PM->UPM draw from dataTex to readTex and read the data. Then we do a UPM->PM draw // from readTex to tempTex followed by a PM->UPM draw to readTex and finally read the data. // We then verify that two reads produced the same values. GrPaint paint; SkAutoTUnref pmToUPMEffect1(SkNEW_ARGS(GrConfigConversionEffect, (dataTex, false, *pmToUPMRule))); SkAutoTUnref upmToPMEffect(SkNEW_ARGS(GrConfigConversionEffect, (readTex, false, *upmToPMRule))); SkAutoTUnref pmToUPMEffect2(SkNEW_ARGS(GrConfigConversionEffect, (tempTex, false, *pmToUPMRule))); context->setRenderTarget(readTex->asRenderTarget()); paint.colorSampler(0)->setEffect(pmToUPMEffect1); context->drawRectToRect(paint, kDstRect, kSrcRect); readTex->readPixels(0, 0, 256, 256, kRGBA_8888_GrPixelConfig, firstRead); context->setRenderTarget(tempTex->asRenderTarget()); paint.colorSampler(0)->setEffect(upmToPMEffect); context->drawRectToRect(paint, kDstRect, kSrcRect); context->setRenderTarget(readTex->asRenderTarget()); paint.colorSampler(0)->setEffect(pmToUPMEffect2); context->drawRectToRect(paint, kDstRect, kSrcRect); readTex->readPixels(0, 0, 256, 256, kRGBA_8888_GrPixelConfig, secondRead); failed = false; for (int y = 0; y < 256 && !failed; ++y) { for (int x = 0; x <= y; ++x) { if (firstRead[256 * y + x] != secondRead[256 * y + x]) { failed = true; break; } } } } if (failed) { *pmToUPMRule = kNone_PMConversion; *upmToPMRule = kNone_PMConversion; } } GrEffect* GrConfigConversionEffect::Create(GrTexture* texture, bool swapRedAndBlue, PMConversion pmConversion) { if (!swapRedAndBlue && kNone_PMConversion == pmConversion) { // If we returned a GrConfigConversionEffect that was equivalent to a GrSingleTextureEffect // then we may pollute our texture cache with redundant shaders. So in the case that no // conversions were requested we instead return a GrSingleTextureEffect. return SkNEW_ARGS(GrSingleTextureEffect, (texture)); } else { if (kRGBA_8888_GrPixelConfig != texture->config() && kBGRA_8888_GrPixelConfig != texture->config() && kNone_PMConversion != pmConversion) { // The PM conversions assume colors are 0..255 return NULL; } return SkNEW_ARGS(GrConfigConversionEffect, (texture, swapRedAndBlue, pmConversion)); } }