/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrBicubicEffect.h" #include "GrInvariantOutput.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLProgramDataManager.h" #include "glsl/GrGLSLUniformHandler.h" #define DS(x) SkDoubleToScalar(x) const SkScalar GrBicubicEffect::gMitchellCoefficients[16] = { DS( 1.0 / 18.0), DS(-9.0 / 18.0), DS( 15.0 / 18.0), DS( -7.0 / 18.0), DS(16.0 / 18.0), DS( 0.0 / 18.0), DS(-36.0 / 18.0), DS( 21.0 / 18.0), DS( 1.0 / 18.0), DS( 9.0 / 18.0), DS( 27.0 / 18.0), DS(-21.0 / 18.0), DS( 0.0 / 18.0), DS( 0.0 / 18.0), DS( -6.0 / 18.0), DS( 7.0 / 18.0), }; class GrGLBicubicEffect : public GrGLSLFragmentProcessor { public: GrGLBicubicEffect(const GrProcessor&); virtual void emitCode(EmitArgs&) override; static inline void GenKey(const GrProcessor& effect, const GrGLSLCaps&, GrProcessorKeyBuilder* b) { const GrTextureDomain& domain = effect.cast().domain(); b->add32(GrTextureDomain::GLDomain::DomainKey(domain)); } protected: void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override; private: typedef GrGLSLProgramDataManager::UniformHandle UniformHandle; UniformHandle fCoefficientsUni; UniformHandle fImageIncrementUni; GrTextureDomain::GLDomain fDomain; typedef GrGLSLFragmentProcessor INHERITED; }; GrGLBicubicEffect::GrGLBicubicEffect(const GrProcessor&) { } void GrGLBicubicEffect::emitCode(EmitArgs& args) { const GrTextureDomain& domain = args.fFp.cast().domain(); GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; fCoefficientsUni = uniformHandler->addUniform(GrGLSLUniformHandler::kFragment_Visibility, kMat44f_GrSLType, kDefault_GrSLPrecision, "Coefficients"); fImageIncrementUni = uniformHandler->addUniform(GrGLSLUniformHandler::kFragment_Visibility, kVec2f_GrSLType, kDefault_GrSLPrecision, "ImageIncrement"); const char* imgInc = uniformHandler->getUniformCStr(fImageIncrementUni); const char* coeff = uniformHandler->getUniformCStr(fCoefficientsUni); SkString cubicBlendName; static const GrGLSLShaderVar gCubicBlendArgs[] = { GrGLSLShaderVar("coefficients", kMat44f_GrSLType), GrGLSLShaderVar("t", kFloat_GrSLType), GrGLSLShaderVar("c0", kVec4f_GrSLType), GrGLSLShaderVar("c1", kVec4f_GrSLType), GrGLSLShaderVar("c2", kVec4f_GrSLType), GrGLSLShaderVar("c3", kVec4f_GrSLType), }; GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder; SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 0); fragBuilder->emitFunction(kVec4f_GrSLType, "cubicBlend", SK_ARRAY_COUNT(gCubicBlendArgs), gCubicBlendArgs, "\tvec4 ts = vec4(1.0, t, t * t, t * t * t);\n" "\tvec4 c = coefficients * ts;\n" "\treturn c.x * c0 + c.y * c1 + c.z * c2 + c.w * c3;\n", &cubicBlendName); fragBuilder->codeAppendf("\tvec2 coord = %s - %s * vec2(0.5);\n", coords2D.c_str(), imgInc); // We unnormalize the coord in order to determine our fractional offset (f) within the texel // We then snap coord to a texel center and renormalize. The snap prevents cases where the // starting coords are near a texel boundary and accumulations of imgInc would cause us to skip/ // double hit a texel. fragBuilder->codeAppendf("\tcoord /= %s;\n", imgInc); fragBuilder->codeAppend("\tvec2 f = fract(coord);\n"); fragBuilder->codeAppendf("\tcoord = (coord - f + vec2(0.5)) * %s;\n", imgInc); fragBuilder->codeAppend("\tvec4 rowColors[4];\n"); for (int y = 0; y < 4; ++y) { for (int x = 0; x < 4; ++x) { SkString coord; coord.printf("coord + %s * vec2(%d, %d)", imgInc, x - 1, y - 1); SkString sampleVar; sampleVar.printf("rowColors[%d]", x); fDomain.sampleTexture(fragBuilder, args.fUniformHandler, args.fGLSLCaps, domain, sampleVar.c_str(), coord, args.fSamplers[0]); } fragBuilder->codeAppendf( "\tvec4 s%d = %s(%s, f.x, rowColors[0], rowColors[1], rowColors[2], rowColors[3]);\n", y, cubicBlendName.c_str(), coeff); } SkString bicubicColor; bicubicColor.printf("%s(%s, f.y, s0, s1, s2, s3)", cubicBlendName.c_str(), coeff); fragBuilder->codeAppendf("\t%s = %s;\n", args.fOutputColor, (GrGLSLExpr4(bicubicColor.c_str()) * GrGLSLExpr4(args.fInputColor)).c_str()); } void GrGLBicubicEffect::onSetData(const GrGLSLProgramDataManager& pdman, const GrProcessor& processor) { const GrBicubicEffect& bicubicEffect = processor.cast(); const GrTexture& texture = *processor.texture(0); float imageIncrement[2]; imageIncrement[0] = 1.0f / texture.width(); imageIncrement[1] = 1.0f / texture.height(); pdman.set2fv(fImageIncrementUni, 1, imageIncrement); pdman.setMatrix4f(fCoefficientsUni, bicubicEffect.coefficients()); fDomain.setData(pdman, bicubicEffect.domain(), texture.origin()); } static inline void convert_row_major_scalar_coeffs_to_column_major_floats(float dst[16], const SkScalar src[16]) { for (int y = 0; y < 4; y++) { for (int x = 0; x < 4; x++) { dst[x * 4 + y] = SkScalarToFloat(src[y * 4 + x]); } } } GrBicubicEffect::GrBicubicEffect(GrTexture* texture, const SkScalar coefficients[16], const SkMatrix &matrix, const SkShader::TileMode tileModes[2]) : INHERITED(texture, matrix, GrTextureParams(tileModes, GrTextureParams::kNone_FilterMode)) , fDomain(GrTextureDomain::IgnoredDomain()) { this->initClassID(); convert_row_major_scalar_coeffs_to_column_major_floats(fCoefficients, coefficients); } GrBicubicEffect::GrBicubicEffect(GrTexture* texture, const SkScalar coefficients[16], const SkMatrix &matrix, const SkRect& domain) : INHERITED(texture, matrix, GrTextureParams(SkShader::kClamp_TileMode, GrTextureParams::kNone_FilterMode)) , fDomain(domain, GrTextureDomain::kClamp_Mode) { this->initClassID(); convert_row_major_scalar_coeffs_to_column_major_floats(fCoefficients, coefficients); } GrBicubicEffect::~GrBicubicEffect() { } void GrBicubicEffect::onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const { GrGLBicubicEffect::GenKey(*this, caps, b); } GrGLSLFragmentProcessor* GrBicubicEffect::onCreateGLSLInstance() const { return new GrGLBicubicEffect(*this); } bool GrBicubicEffect::onIsEqual(const GrFragmentProcessor& sBase) const { const GrBicubicEffect& s = sBase.cast(); return !memcmp(fCoefficients, s.coefficients(), 16) && fDomain == s.fDomain; } void GrBicubicEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const { // FIXME: Perhaps we can do better. inout->mulByUnknownSingleComponent(); } GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrBicubicEffect); const GrFragmentProcessor* GrBicubicEffect::TestCreate(GrProcessorTestData* d) { int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx : GrProcessorUnitTest::kAlphaTextureIdx; SkScalar coefficients[16]; for (int i = 0; i < 16; i++) { coefficients[i] = d->fRandom->nextSScalar1(); } return GrBicubicEffect::Create(d->fTextures[texIdx], coefficients); } ////////////////////////////////////////////////////////////////////////////// bool GrBicubicEffect::ShouldUseBicubic(const SkMatrix& matrix, GrTextureParams::FilterMode* filterMode) { if (matrix.isIdentity()) { *filterMode = GrTextureParams::kNone_FilterMode; return false; } SkScalar scales[2]; if (!matrix.getMinMaxScales(scales) || scales[0] < SK_Scalar1) { // Bicubic doesn't handle arbitrary minimization well, as src texels can be skipped // entirely, *filterMode = GrTextureParams::kMipMap_FilterMode; return false; } // At this point if scales[1] == SK_Scalar1 then the matrix doesn't do any scaling. if (scales[1] == SK_Scalar1) { if (matrix.rectStaysRect() && SkScalarIsInt(matrix.getTranslateX()) && SkScalarIsInt(matrix.getTranslateY())) { *filterMode = GrTextureParams::kNone_FilterMode; } else { // Use bilerp to handle rotation or fractional translation. *filterMode = GrTextureParams::kBilerp_FilterMode; } return false; } // When we use the bicubic filtering effect each sample is read from the texture using // nearest neighbor sampling. *filterMode = GrTextureParams::kNone_FilterMode; return true; }