/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrCCPRCubicProcessor_DEFINED #define GrCCPRCubicProcessor_DEFINED #include "ccpr/GrCCPRCoverageProcessor.h" class GrGLSLGeometryBuilder; /** * This class renders the coverage of convex closed cubic segments using the techniques outlined in * "Resolution Independent Curve Rendering using Programmable Graphics Hardware" by Charles Loop and * Jim Blinn: * * https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf * * The caller is expected to chop cubics at the KLM roots (a.k.a. inflection points and loop * intersection points, resulting in necessarily convex segments) before feeding them into this * processor. * * The curves are rendered in two passes: * * Pass 1: Draw the (convex) bezier quadrilateral, inset by 1/2 pixel all around, and use the * gradient-based AA technique outlined in the Loop/Blinn paper to compute coverage. * * Pass 2: Draw a border around the previous inset, up to the bezier quadrilatral's conservative * raster hull, and compute coverage using pseudo MSAA. This pass is necessary because the * gradient approach does not work near the L and M lines. * * FIXME: The pseudo MSAA border is slow and ugly. We should investigate an alternate solution of * just approximating the curve with straight lines for short distances across the problem points * instead. */ class GrCCPRCubicProcessor : public GrCCPRCoverageProcessor::PrimitiveProcessor { public: enum class Type { kSerpentine, kLoop }; GrCCPRCubicProcessor(Type type) : INHERITED(CoverageType::kShader) , fType(type) , fInset(kVec3f_GrSLType) , fKLMMatrix("klm_matrix", kMat33f_GrSLType, GrShaderVar::kNonArray, kHigh_GrSLPrecision) , fKLMDerivatives("klm_derivatives", kVec2f_GrSLType, 3, kHigh_GrSLPrecision) {} void resetVaryings(GrGLSLVaryingHandler* varyingHandler) override { varyingHandler->addVarying("insets", &fInset, kHigh_GrSLPrecision); } void onEmitVertexShader(const GrCCPRCoverageProcessor&, GrGLSLVertexBuilder*, const TexelBufferHandle& pointsBuffer, const char* atlasOffset, const char* rtAdjust, GrGPArgs*) const override; void emitWind(GrGLSLGeometryBuilder*, const char* rtAdjust, const char* outputWind) const final; void onEmitGeometryShader(GrGLSLGeometryBuilder*, const char* emitVertexFn, const char* wind, const char* rtAdjust) const final; protected: virtual void emitCubicGeometry(GrGLSLGeometryBuilder*, const char* emitVertexFn, const char* wind, const char* rtAdjust) const = 0; const Type fType; GrGLSLVertToGeo fInset; GrShaderVar fKLMMatrix; GrShaderVar fKLMDerivatives; typedef GrCCPRCoverageProcessor::PrimitiveProcessor INHERITED; }; class GrCCPRCubicInsetProcessor : public GrCCPRCubicProcessor { public: GrCCPRCubicInsetProcessor(Type type) : INHERITED(type) , fKLM(kVec3f_GrSLType) , fGradMatrix(kMat22f_GrSLType) {} void resetVaryings(GrGLSLVaryingHandler* varyingHandler) override { this->INHERITED::resetVaryings(varyingHandler); varyingHandler->addVarying("klm", &fKLM, kHigh_GrSLPrecision); varyingHandler->addVarying("grad_matrix", &fGradMatrix, kHigh_GrSLPrecision); } void emitCubicGeometry(GrGLSLGeometryBuilder*, const char* emitVertexFn, const char* wind, const char* rtAdjust) const override; void emitPerVertexGeometryCode(SkString* fnBody, const char* position, const char* coverage, const char* wind) const override; void emitShaderCoverage(GrGLSLFragmentBuilder*, const char* outputCoverage) const override; protected: GrGLSLGeoToFrag fKLM; GrGLSLGeoToFrag fGradMatrix; typedef GrCCPRCubicProcessor INHERITED; }; class GrCCPRCubicBorderProcessor : public GrCCPRCubicProcessor { public: GrCCPRCubicBorderProcessor(Type type) : INHERITED(type) , fEdgeDistanceEquation("edge_distance_equation", kVec3f_GrSLType, GrShaderVar::kNonArray, kHigh_GrSLPrecision) , fEdgeDistanceDerivatives("edge_distance_derivatives", kVec2f_GrSLType, GrShaderVar::kNonArray, kHigh_GrSLPrecision) , fEdgeSpaceTransform("edge_space_transform", kVec4f_GrSLType, GrShaderVar::kNonArray, kHigh_GrSLPrecision) , fKLMD(kVec4f_GrSLType) , fdKLMDdx(kVec4f_GrSLType) , fdKLMDdy(kVec4f_GrSLType) , fEdgeSpaceCoord(kVec2f_GrSLType) {} void resetVaryings(GrGLSLVaryingHandler* varyingHandler) override { this->INHERITED::resetVaryings(varyingHandler); varyingHandler->addVarying("klmd", &fKLMD, kHigh_GrSLPrecision); varyingHandler->addFlatVarying("dklmddx", &fdKLMDdx, kHigh_GrSLPrecision); varyingHandler->addFlatVarying("dklmddy", &fdKLMDdy, kHigh_GrSLPrecision); varyingHandler->addVarying("edge_space_coord", &fEdgeSpaceCoord, kHigh_GrSLPrecision); } void emitCubicGeometry(GrGLSLGeometryBuilder*, const char* emitVertexFn, const char* wind, const char* rtAdjust) const override; void emitPerVertexGeometryCode(SkString* fnBody, const char* position, const char* coverage, const char* wind) const override; void emitShaderCoverage(GrGLSLFragmentBuilder*, const char* outputCoverage) const override; protected: GrShaderVar fEdgeDistanceEquation; GrShaderVar fEdgeDistanceDerivatives; GrShaderVar fEdgeSpaceTransform; GrGLSLGeoToFrag fKLMD; GrGLSLGeoToFrag fdKLMDdx; GrGLSLGeoToFrag fdKLMDdy; GrGLSLGeoToFrag fEdgeSpaceCoord; typedef GrCCPRCubicProcessor INHERITED; }; #endif