/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrCCPRCubicProcessor.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLGeometryShaderBuilder.h" #include "glsl/GrGLSLVertexShaderBuilder.h" void GrCCPRCubicProcessor::onEmitVertexShader(const GrCCPRCoverageProcessor& proc, GrGLSLVertexBuilder* v, const TexelBufferHandle& pointsBuffer, const char* atlasOffset, const char* rtAdjust, GrGPArgs* gpArgs) const { v->codeAppend ("highp float2 self = "); v->appendTexelFetch(pointsBuffer, SkStringPrintf("%s.x + sk_VertexID", proc.instanceAttrib()).c_str()); v->codeAppendf(".xy + %s;", atlasOffset); gpArgs->fPositionVar.set(kVec2f_GrSLType, "self"); } void GrCCPRCubicProcessor::emitWind(GrGLSLGeometryBuilder* g, const char* rtAdjust, const char* outputWind) const { // We will define bezierpts in onEmitGeometryShader. g->codeAppend ("highp float area_times_2 = " "determinant(float3x3(1, bezierpts[0], " "1, bezierpts[2], " "0, bezierpts[3] - bezierpts[1]));"); // Drop curves that are nearly flat. The KLM math becomes unstable in this case. g->codeAppendf("if (2 * abs(area_times_2) < length((bezierpts[3] - bezierpts[0]) * %s.zx)) {", rtAdjust); #ifndef SK_BUILD_FOR_MAC g->codeAppend ( "return;"); #else // Returning from this geometry shader makes Mac very unhappy. Instead we make wind 0. g->codeAppend ( "area_times_2 = 0;"); #endif g->codeAppend ("}"); g->codeAppendf("%s = sign(area_times_2);", outputWind); } void GrCCPRCubicProcessor::onEmitGeometryShader(GrGLSLGeometryBuilder* g, const char* emitVertexFn, const char* wind, const char* rtAdjust) const { // Prepend bezierpts at the start of the shader. g->codePrependf("highp float4x2 bezierpts = float4x2(sk_in[0].gl_Position.xy, " "sk_in[1].gl_Position.xy, " "sk_in[2].gl_Position.xy, " "sk_in[3].gl_Position.xy);"); // Evaluate the cubic at T=.5 for an mid-ish point. g->codeAppendf("highp float2 midpoint = bezierpts * float4(.125, .375, .375, .125);"); // Find the cubic's power basis coefficients. g->codeAppend ("highp float2x4 C = float4x4(-1, 3, -3, 1, " " 3, -6, 3, 0, " "-3, 3, 0, 0, " " 1, 0, 0, 0) * transpose(bezierpts);"); // Find the cubic's inflection function. g->codeAppend ("highp float D3 = +determinant(float2x2(C[0].yz, C[1].yz));"); g->codeAppend ("highp float D2 = -determinant(float2x2(C[0].xz, C[1].xz));"); g->codeAppend ("highp float D1 = +determinant(float2x2(C));"); // Calculate the KLM matrix. g->declareGlobal(fKLMMatrix); g->codeAppend ("highp float4 K, L, M;"); g->codeAppend ("highp float2 l, m;"); g->codeAppend ("highp float discr = 3*D2*D2 - 4*D1*D3;"); if (CubicType::kSerpentine == fCubicType) { // This math also works out for the "cusp" and "cusp at infinity" cases. g->codeAppend ("highp float q = 3*D2 + sign(D2) * sqrt(max(3*discr, 0));"); g->codeAppend ("l.ts = normalize(float2(q, 6*D1));"); g->codeAppend ("m.ts = discr <= 0 ? l.ts : normalize(float2(2*D3, q));"); g->codeAppend ("K = float4(0, l.s * m.s, -l.t * m.s - m.t * l.s, l.t * m.t);"); g->codeAppend ("L = float4(-1,3,-3,1) * l.ssst * l.sstt * l.sttt;"); g->codeAppend ("M = float4(-1,3,-3,1) * m.ssst * m.sstt * m.sttt;"); } else { g->codeAppend ("highp float q = D2 + sign(D2) * sqrt(max(-discr, 0));"); g->codeAppend ("l.ts = normalize(float2(q, 2*D1));"); g->codeAppend ("m.ts = discr >= 0 ? l.ts : normalize(float2(2 * (D2*D2 - D3*D1), D1*q));"); g->codeAppend ("highp float4 lxm = float4(l.s * m.s, l.s * m.t, l.t * m.s, l.t * m.t);"); g->codeAppend ("K = float4(0, lxm.x, -lxm.y - lxm.z, lxm.w);"); g->codeAppend ("L = float4(-1,1,-1,1) * l.sstt * (lxm.xyzw + float4(0, 2*lxm.zy, 0));"); g->codeAppend ("M = float4(-1,1,-1,1) * m.sstt * (lxm.xzyw + float4(0, 2*lxm.yz, 0));"); } g->codeAppend ("lowp int middlerow = abs(D2) > abs(D1) ? 2 : 1;"); g->codeAppend ("highp float3x3 CI = inverse(float3x3(C[0][0], C[0][middlerow], C[0][3], " "C[1][0], C[1][middlerow], C[1][3], " " 0, 0, 1));"); g->codeAppendf("%s = CI * float3x3(K[0], K[middlerow], K[3], " "L[0], L[middlerow], L[3], " "M[0], M[middlerow], M[3]);", fKLMMatrix.c_str()); // Orient the KLM matrix so we fill the correct side of the curve. g->codeAppendf("lowp float2 orientation = sign(float3(midpoint, 1) * float2x3(%s[1], %s[2]));", fKLMMatrix.c_str(), fKLMMatrix.c_str()); g->codeAppendf("%s *= float3x3(orientation[0] * orientation[1], 0, 0, " "0, orientation[0], 0, " "0, 0, orientation[1]);", fKLMMatrix.c_str()); g->declareGlobal(fKLMDerivatives); g->codeAppendf("%s[0] = %s[0].xy * %s.xz;", fKLMDerivatives.c_str(), fKLMMatrix.c_str(), rtAdjust); g->codeAppendf("%s[1] = %s[1].xy * %s.xz;", fKLMDerivatives.c_str(), fKLMMatrix.c_str(), rtAdjust); g->codeAppendf("%s[2] = %s[2].xy * %s.xz;", fKLMDerivatives.c_str(), fKLMMatrix.c_str(), rtAdjust); // Determine the amount of additional coverage to subtract out for the flat edge (P3 -> P0). g->declareGlobal(fEdgeDistanceEquation); g->codeAppendf("int edgeidx0 = %s > 0 ? 3 : 0;", wind); g->codeAppendf("highp float2 edgept0 = bezierpts[edgeidx0];"); g->codeAppendf("highp float2 edgept1 = bezierpts[3 - edgeidx0];"); this->emitEdgeDistanceEquation(g, "edgept0", "edgept1", fEdgeDistanceEquation.c_str()); this->emitCubicGeometry(g, emitVertexFn, wind, rtAdjust); } void GrCCPRCubicProcessor::emitPerVertexGeometryCode(SkString* fnBody, const char* position, const char* /*coverage*/, const char* /*wind*/) const { fnBody->appendf("highp float3 klm = float3(%s, 1) * %s;", position, fKLMMatrix.c_str()); fnBody->appendf("highp float d = dot(float3(%s, 1), %s);", position, fEdgeDistanceEquation.c_str()); fnBody->appendf("%s = float4(klm, d);", fKLMD.gsOut()); this->onEmitPerVertexGeometryCode(fnBody); } void GrCCPRCubicHullProcessor::emitCubicGeometry(GrGLSLGeometryBuilder* g, const char* emitVertexFn, const char* wind, const char* rtAdjust) const { // FIXME: we should clip this geometry at the tip of the curve. int maxVertices = this->emitHullGeometry(g, emitVertexFn, "bezierpts", 4, "sk_InvocationID", "midpoint"); g->configure(GrGLSLGeometryBuilder::InputType::kLinesAdjacency, GrGLSLGeometryBuilder::OutputType::kTriangleStrip, maxVertices, 4); } void GrCCPRCubicHullProcessor::onEmitPerVertexGeometryCode(SkString* fnBody) const { // "klm" was just defined by the base class. fnBody->appendf("%s[0] = 3 * klm[0] * %s[0];", fGradMatrix.gsOut(), fKLMDerivatives.c_str()); fnBody->appendf("%s[1] = -klm[1] * %s[2].xy - klm[2] * %s[1].xy;", fGradMatrix.gsOut(), fKLMDerivatives.c_str(), fKLMDerivatives.c_str()); } void GrCCPRCubicHullProcessor::emitShaderCoverage(GrGLSLFragmentBuilder* f, const char* outputCoverage) const { f->codeAppendf("highp float k = %s.x, l = %s.y, m = %s.z, d = %s.w;", fKLMD.fsIn(), fKLMD.fsIn(), fKLMD.fsIn(), fKLMD.fsIn()); f->codeAppend ("highp float f = k*k*k - l*m;"); f->codeAppendf("highp float2 grad_f = %s * float2(k, 1);", fGradMatrix.fsIn()); f->codeAppendf("%s = clamp(0.5 - f * inversesqrt(dot(grad_f, grad_f)), 0, 1);", outputCoverage); f->codeAppendf("%s += min(d, 0);", outputCoverage); // Flat closing edge. } void GrCCPRCubicCornerProcessor::emitCubicGeometry(GrGLSLGeometryBuilder* g, const char* emitVertexFn, const char* wind, const char* rtAdjust) const { // We defined bezierpts in onEmitGeometryShader. g->declareGlobal(fEdgeDistanceDerivatives); g->codeAppendf("%s = %s.xy * %s.xz;", fEdgeDistanceDerivatives.c_str(), fEdgeDistanceEquation.c_str(), rtAdjust); g->codeAppendf("highp float2 corner = bezierpts[sk_InvocationID * 3];"); int numVertices = this->emitCornerGeometry(g, emitVertexFn, "corner"); g->configure(GrGLSLGeometryBuilder::InputType::kLinesAdjacency, GrGLSLGeometryBuilder::OutputType::kTriangleStrip, numVertices, 2); } void GrCCPRCubicCornerProcessor::onEmitPerVertexGeometryCode(SkString* fnBody) const { fnBody->appendf("%s = float4(%s[0].x, %s[1].x, %s[2].x, %s.x);", fdKLMDdx.gsOut(), fKLMDerivatives.c_str(), fKLMDerivatives.c_str(), fKLMDerivatives.c_str(), fEdgeDistanceDerivatives.c_str()); fnBody->appendf("%s = float4(%s[0].y, %s[1].y, %s[2].y, %s.y);", fdKLMDdy.gsOut(), fKLMDerivatives.c_str(), fKLMDerivatives.c_str(), fKLMDerivatives.c_str(), fEdgeDistanceDerivatives.c_str()); // Otherwise, fEdgeDistances = fEdgeDistances * sign(wind * rtAdjust.x * rdAdjust.z). GR_STATIC_ASSERT(kTopLeft_GrSurfaceOrigin == GrCCPRCoverageProcessor::kAtlasOrigin); } void GrCCPRCubicCornerProcessor::emitShaderCoverage(GrGLSLFragmentBuilder* f, const char* outputCoverage) const { f->codeAppendf("highp float2x4 grad_klmd = float2x4(%s, %s);", fdKLMDdx.fsIn(), fdKLMDdy.fsIn()); // Erase what the previous hull shader wrote. We don't worry about the two corners falling on // the same pixel because those cases should have been weeded out by this point. f->codeAppendf("highp float k = %s.x, l = %s.y, m = %s.z, d = %s.w;", fKLMD.fsIn(), fKLMD.fsIn(), fKLMD.fsIn(), fKLMD.fsIn()); f->codeAppend ("highp float f = k*k*k - l*m;"); f->codeAppend ("highp float2 grad_f = float3(3*k*k, -m, -l) * float2x3(grad_klmd);"); f->codeAppendf("%s = -clamp(0.5 - f * inversesqrt(dot(grad_f, grad_f)), 0, 1);", outputCoverage); f->codeAppendf("%s -= d;", outputCoverage); // Use software msaa to estimate actual coverage at the corner pixels. const int sampleCount = this->defineSoftSampleLocations(f, "samples"); f->codeAppendf("highp float4 klmd_center = float4(%s.xyz, %s.w + 0.5);", fKLMD.fsIn(), fKLMD.fsIn()); f->codeAppendf("for (int i = 0; i < %i; ++i) {", sampleCount); f->codeAppend ( "highp float4 klmd = grad_klmd * samples[i] + klmd_center;"); f->codeAppend ( "lowp float f = klmd.y * klmd.z - klmd.x * klmd.x * klmd.x;"); f->codeAppendf( "%s += all(greaterThan(float4(f, klmd.y, klmd.z, klmd.w), " "float4(0))) ? %f : 0;", outputCoverage, 1.0 / sampleCount); f->codeAppend ("}"); }