/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrGrCCGeometry_DEFINED #define GrGrCCGeometry_DEFINED #include "SkGeometry.h" #include "SkNx.h" #include "SkPoint.h" #include "SkTArray.h" /** * This class chops device-space contours up into a series of segments that CCPR knows how to * render. (See GrCCGeometry::Verb.) * * NOTE: This must be done in device space, since an affine transformation can change whether a * curve is monotonic. */ class GrCCGeometry { public: // These are the verbs that CCPR knows how to draw. If a path has any segments that don't map to // this list, then they are chopped into smaller ones that do. A list of these comprise a // compact representation of what can later be expanded into GPU instance data. enum class Verb : uint8_t { kBeginPath, // Included only for caller convenience. kBeginContour, kLineTo, kMonotonicQuadraticTo, // Monotonic relative to the vector between its endpoints [P2 - P0]. kMonotonicCubicTo, kEndClosedContour, // endPt == startPt. kEndOpenContour // endPt != startPt. }; // These tallies track numbers of CCPR primitives that are required to draw a contour. struct PrimitiveTallies { int fTriangles; // Number of triangles in the contour's fan. int fWeightedTriangles; // Triangles (from the tessellator) whose winding magnitude > 1. int fQuadratics; int fCubics; void operator+=(const PrimitiveTallies&); PrimitiveTallies operator-(const PrimitiveTallies&) const; bool operator==(const PrimitiveTallies&); }; GrCCGeometry(int numSkPoints = 0, int numSkVerbs = 0) : fPoints(numSkPoints * 3) // Reserve for a 3x expansion in points and verbs. , fVerbs(numSkVerbs * 3) {} const SkTArray& points() const { SkASSERT(!fBuildingContour); return fPoints; } const SkTArray& verbs() const { SkASSERT(!fBuildingContour); return fVerbs; } void reset() { SkASSERT(!fBuildingContour); fPoints.reset(); fVerbs.reset(); } // This is included in case the caller needs to discard previously added contours. It is up to // the caller to track counts and ensure we don't pop back into the middle of a different // contour. void resize_back(int numPoints, int numVerbs) { SkASSERT(!fBuildingContour); fPoints.resize_back(numPoints); fVerbs.resize_back(numVerbs); SkASSERT(fVerbs.empty() || fVerbs.back() == Verb::kEndOpenContour || fVerbs.back() == Verb::kEndClosedContour); } void beginPath(); void beginContour(const SkPoint&); void lineTo(const SkPoint&); void quadraticTo(const SkPoint[3]); // We pass through inflection points and loop intersections using a line and quadratic(s) // respectively. 'inflectPad' and 'loopIntersectPad' specify how close (in pixels) cubic // segments are allowed to get to these points. For normal rendering you will want to use the // default values, but these can be overridden for testing purposes. // // NOTE: loops do appear to require two full pixels of padding around the intersection point. // With just one pixel-width of pad, we start to see bad pixels. Ultimately this has a // minimal effect on the total amount of segments produced. Most sections that pass // through the loop intersection can be approximated with a single quadratic anyway, // regardless of whether we are use one pixel of pad or two (1.622 avg. quads per loop // intersection vs. 1.489 on the tiger). void cubicTo(const SkPoint[4], float inflectPad = 0.55f, float loopIntersectPad = 2); PrimitiveTallies endContour(); // Returns the numbers of primitives needed to draw the contour. private: inline void appendLine(const Sk2f& endpt); inline void appendMonotonicQuadratics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2); inline void appendSingleMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2); using AppendCubicFn = void(GrCCGeometry::*)(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3, int maxSubdivisions); static constexpr int kMaxSubdivionsPerCubicSection = 2; template inline void chopCubicAtMidTangent(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3, const Sk2f& tan0, const Sk2f& tan3, int maxFutureSubdivisions = kMaxSubdivionsPerCubicSection); template inline void chopCubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3, float T, int maxFutureSubdivisions = kMaxSubdivionsPerCubicSection); void appendMonotonicCubics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3, int maxSubdivisions = kMaxSubdivionsPerCubicSection); void appendCubicApproximation(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3, int maxSubdivisions = kMaxSubdivionsPerCubicSection); // Transient state used while building a contour. SkPoint fCurrAnchorPoint; PrimitiveTallies fCurrContourTallies; SkCubicType fCurrCubicType; SkDEBUGCODE(bool fBuildingContour = false); // TODO: These points could eventually be written directly to block-allocated GPU buffers. SkSTArray<128, SkPoint, true> fPoints; SkSTArray<128, Verb, true> fVerbs; }; inline void GrCCGeometry::PrimitiveTallies::operator+=(const PrimitiveTallies& b) { fTriangles += b.fTriangles; fWeightedTriangles += b.fWeightedTriangles; fQuadratics += b.fQuadratics; fCubics += b.fCubics; } GrCCGeometry::PrimitiveTallies inline GrCCGeometry::PrimitiveTallies::operator-(const PrimitiveTallies& b) const { return {fTriangles - b.fTriangles, fWeightedTriangles - b.fWeightedTriangles, fQuadratics - b.fQuadratics, fCubics - b.fCubics}; } inline bool GrCCGeometry::PrimitiveTallies::operator==(const PrimitiveTallies& b) { return fTriangles == b.fTriangles && fWeightedTriangles == b.fWeightedTriangles && fQuadratics == b.fQuadratics && fCubics == b.fCubics; } #endif