/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrCCGeometry.h" #include "GrTypes.h" #include "SkGeometry.h" #include #include #include // We convert between SkPoint and Sk2f freely throughout this file. GR_STATIC_ASSERT(SK_SCALAR_IS_FLOAT); GR_STATIC_ASSERT(2 * sizeof(float) == sizeof(SkPoint)); GR_STATIC_ASSERT(0 == offsetof(SkPoint, fX)); static constexpr float kFlatnessThreshold = 1/16.f; // 1/16 of a pixel. void GrCCGeometry::beginPath() { SkASSERT(!fBuildingContour); fVerbs.push_back(Verb::kBeginPath); } void GrCCGeometry::beginContour(const SkPoint& pt) { SkASSERT(!fBuildingContour); // Store the current verb count in the fTriangles field for now. When we close the contour we // will use this value to calculate the actual number of triangles in its fan. fCurrContourTallies = {fVerbs.count(), 0, 0, 0, 0}; fPoints.push_back(pt); fVerbs.push_back(Verb::kBeginContour); fCurrAnchorPoint = pt; SkDEBUGCODE(fBuildingContour = true); } void GrCCGeometry::lineTo(const SkPoint P[2]) { SkASSERT(fBuildingContour); SkASSERT(P[0] == fPoints.back()); Sk2f p0 = Sk2f::Load(P); Sk2f p1 = Sk2f::Load(P+1); this->appendLine(p0, p1); } inline void GrCCGeometry::appendLine(const Sk2f& p0, const Sk2f& p1) { SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1])); if ((p0 == p1).allTrue()) { return; } p1.store(&fPoints.push_back()); fVerbs.push_back(Verb::kLineTo); } static inline Sk2f normalize(const Sk2f& n) { Sk2f nn = n*n; return n * (nn + SkNx_shuffle<1,0>(nn)).rsqrt(); } static inline float dot(const Sk2f& a, const Sk2f& b) { float product[2]; (a * b).store(product); return product[0] + product[1]; } static inline bool are_collinear(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, float tolerance = kFlatnessThreshold) { Sk2f l = p2 - p0; // Line from p0 -> p2. // lwidth = Manhattan width of l. Sk2f labs = l.abs(); float lwidth = labs[0] + labs[1]; // d = |p1 - p0| dot | l.y| // |-l.x| = distance from p1 to l. Sk2f dd = (p1 - p0) * SkNx_shuffle<1,0>(l); float d = dd[0] - dd[1]; // We are collinear if a box with radius "tolerance", centered on p1, touches the line l. // To decide this, we check if the distance from p1 to the line is less than the distance from // p1 to the far corner of this imaginary box, along that same normal vector. // The far corner of the box can be found at "p1 + sign(n) * tolerance", where n is normal to l: // // abs(dot(p1 - p0, n)) <= dot(sign(n) * tolerance, n) // // Which reduces to: // // abs(d) <= (n.x * sign(n.x) + n.y * sign(n.y)) * tolerance // abs(d) <= (abs(n.x) + abs(n.y)) * tolerance // // Use "<=" in case l == 0. return std::abs(d) <= lwidth * tolerance; } static inline bool are_collinear(const SkPoint P[4], float tolerance = kFlatnessThreshold) { Sk4f Px, Py; // |Px Py| |p0 - p3| Sk4f::Load2(P, &Px, &Py); // |. . | = |p1 - p3| Px -= Px[3]; // |. . | |p2 - p3| Py -= Py[3]; // |. . | | 0 | // Find [lx, ly] = the line from p3 to the furthest-away point from p3. Sk4f Pwidth = Px.abs() + Py.abs(); // Pwidth = Manhattan width of each point. int lidx = Pwidth[0] > Pwidth[1] ? 0 : 1; lidx = Pwidth[lidx] > Pwidth[2] ? lidx : 2; float lx = Px[lidx], ly = Py[lidx]; float lwidth = Pwidth[lidx]; // lwidth = Manhattan width of [lx, ly]. // |Px Py| // d = |. . | * | ly| = distances from each point to l (two of the distances will be zero). // |. . | |-lx| // |. . | Sk4f d = Px*ly - Py*lx; // We are collinear if boxes with radius "tolerance", centered on all 4 points all touch line l. // (See the rationale for this formula in the above, 3-point version of this function.) // Use "<=" in case l == 0. return (d.abs() <= lwidth * tolerance).allTrue(); } // Returns whether the (convex) curve segment is monotonic with respect to [endPt - startPt]. static inline bool is_convex_curve_monotonic(const Sk2f& startPt, const Sk2f& tan0, const Sk2f& endPt, const Sk2f& tan1) { Sk2f v = endPt - startPt; float dot0 = dot(tan0, v); float dot1 = dot(tan1, v); // A small, negative tolerance handles floating-point error in the case when one tangent // approaches 0 length, meaning the (convex) curve segment is effectively a flat line. float tolerance = -std::max(std::abs(dot0), std::abs(dot1)) * SK_ScalarNearlyZero; return dot0 >= tolerance && dot1 >= tolerance; } template static inline SkNx lerp(const SkNx& a, const SkNx& b, const SkNx& t) { return SkNx_fma(t, b - a, a); } void GrCCGeometry::quadraticTo(const SkPoint P[3]) { SkASSERT(fBuildingContour); SkASSERT(P[0] == fPoints.back()); Sk2f p0 = Sk2f::Load(P); Sk2f p1 = Sk2f::Load(P+1); Sk2f p2 = Sk2f::Load(P+2); // Don't crunch on the curve if it is nearly flat (or just very small). Flat curves can break // The monotonic chopping math. if (are_collinear(p0, p1, p2)) { this->appendLine(p0, p2); return; } this->appendQuadratics(p0, p1, p2); } inline void GrCCGeometry::appendQuadratics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2) { Sk2f tan0 = p1 - p0; Sk2f tan1 = p2 - p1; // This should almost always be this case for well-behaved curves in the real world. if (is_convex_curve_monotonic(p0, tan0, p2, tan1)) { this->appendMonotonicQuadratic(p0, p1, p2); return; } // Chop the curve into two segments with equal curvature. To do this we find the T value whose // tangent angle is halfway between tan0 and tan1. Sk2f n = normalize(tan0) - normalize(tan1); // The midtangent can be found where (dQ(t) dot n) = 0: // // 0 = (dQ(t) dot n) = | 2*t 1 | * | p0 - 2*p1 + p2 | * | n | // | -2*p0 + 2*p1 | | . | // // = | 2*t 1 | * | tan1 - tan0 | * | n | // | 2*tan0 | | . | // // = 2*t * ((tan1 - tan0) dot n) + (2*tan0 dot n) // // t = (tan0 dot n) / ((tan0 - tan1) dot n) Sk2f dQ1n = (tan0 - tan1) * n; Sk2f dQ0n = tan0 * n; Sk2f t = (dQ0n + SkNx_shuffle<1,0>(dQ0n)) / (dQ1n + SkNx_shuffle<1,0>(dQ1n)); t = Sk2f::Min(Sk2f::Max(t, 0), 1); // Clamp for FP error. Sk2f p01 = SkNx_fma(t, tan0, p0); Sk2f p12 = SkNx_fma(t, tan1, p1); Sk2f p012 = lerp(p01, p12, t); this->appendMonotonicQuadratic(p0, p01, p012); this->appendMonotonicQuadratic(p012, p12, p2); } inline void GrCCGeometry::appendMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2) { // Don't send curves to the GPU if we know they are nearly flat (or just very small). if (are_collinear(p0, p1, p2)) { this->appendLine(p0, p2); return; } SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1])); SkASSERT((p0 != p2).anyTrue()); p1.store(&fPoints.push_back()); p2.store(&fPoints.push_back()); fVerbs.push_back(Verb::kMonotonicQuadraticTo); ++fCurrContourTallies.fQuadratics; } static inline Sk2f first_unless_nearly_zero(const Sk2f& a, const Sk2f& b) { Sk2f aa = a*a; aa += SkNx_shuffle<1,0>(aa); SkASSERT(aa[0] == aa[1]); Sk2f bb = b*b; bb += SkNx_shuffle<1,0>(bb); SkASSERT(bb[0] == bb[1]); return (aa > bb * SK_ScalarNearlyZero).thenElse(a, b); } static inline void get_cubic_tangents(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3, Sk2f* tan0, Sk2f* tan1) { *tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0); *tan1 = first_unless_nearly_zero(p3 - p2, p3 - p1); } static inline bool is_cubic_nearly_quadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3, const Sk2f& tan0, const Sk2f& tan1, Sk2f* c) { Sk2f c1 = SkNx_fma(Sk2f(1.5f), tan0, p0); Sk2f c2 = SkNx_fma(Sk2f(-1.5f), tan1, p3); *c = (c1 + c2) * .5f; // Hopefully optimized out if not used? return ((c1 - c2).abs() <= 1).allTrue(); } enum class ExcludedTerm : bool { kQuadraticTerm, kLinearTerm }; // Finds where to chop a non-loop around its inflection points. The resulting cubic segments will be // chopped such that a box of radius 'padRadius', centered at any point along the curve segment, is // guaranteed to not cross the tangent lines at the inflection points (a.k.a lines L & M). // // 'chops' will be filled with 0, 2, or 4 T values. The segments between T0..T1 and T2..T3 must be // drawn with flat lines instead of cubics. // // A serpentine cubic has two inflection points, so this method takes Sk2f and computes the padding // for both in SIMD. static inline void find_chops_around_inflection_points(float padRadius, Sk2f tl, Sk2f sl, const Sk2f& C0, const Sk2f& C1, ExcludedTerm skipTerm, float Cdet, SkSTArray<4, float>* chops) { SkASSERT(chops->empty()); SkASSERT(padRadius >= 0); padRadius /= std::abs(Cdet); // Scale this single value rather than all of C^-1 later on. // The homogeneous parametric functions for distance from lines L & M are: // // l(t,s) = (t*sl - s*tl)^3 // m(t,s) = (t*sm - s*tm)^3 // // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware", // 4.3 Finding klmn: // // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf // // From here on we use Sk2f with "L" names, but the second lane will be for line M. tl = (sl > 0).thenElse(tl, -tl); // Tl=tl/sl is the triple root of l(t,s). Normalize so s >= 0. sl = sl.abs(); // Convert l(t,s), m(t,s) to power-basis form: // // | l3 m3 | // |l(t,s) m(t,s)| = |t^3 t^2*s t*s^2 s^3| * | l2 m2 | // | l1 m1 | // | l0 m0 | // Sk2f l3 = sl*sl*sl; Sk2f l2or1 = (ExcludedTerm::kLinearTerm == skipTerm) ? sl*sl*tl*-3 : sl*tl*tl*3; // The equation for line L can be found as follows: // // L = C^-1 * (l excluding skipTerm) // // (See comments for GrPathUtils::calcCubicInverseTransposePowerBasisMatrix.) // We are only interested in the normal to L, so only need the upper 2x2 of C^-1. And rather // than divide by determinant(C) here, we have already performed this divide on padRadius. Sk2f Lx = C1[1]*l3 - C0[1]*l2or1; Sk2f Ly = -C1[0]*l3 + C0[0]*l2or1; // A box of radius "padRadius" is touching line L if "center dot L" is less than the Manhattan // with of L. (See rationale in are_collinear.) Sk2f Lwidth = Lx.abs() + Ly.abs(); Sk2f pad = Lwidth * padRadius; // Will T=(t + cbrt(pad))/s be greater than 0? No need to solve roots outside T=0..1. Sk2f insideLeftPad = pad + tl*tl*tl; // Will T=(t - cbrt(pad))/s be less than 1? No need to solve roots outside T=0..1. Sk2f tms = tl - sl; Sk2f insideRightPad = pad - tms*tms*tms; // Solve for the T values where abs(l(T)) = pad. if (insideLeftPad[0] > 0 && insideRightPad[0] > 0) { float padT = cbrtf(pad[0]); Sk2f pts = (tl[0] + Sk2f(-padT, +padT)) / sl[0]; pts.store(chops->push_back_n(2)); } // Solve for the T values where abs(m(T)) = pad. if (insideLeftPad[1] > 0 && insideRightPad[1] > 0) { float padT = cbrtf(pad[1]); Sk2f pts = (tl[1] + Sk2f(-padT, +padT)) / sl[1]; pts.store(chops->push_back_n(2)); } } static inline void swap_if_greater(float& a, float& b) { if (a > b) { std::swap(a, b); } } // Finds where to chop a non-loop around its intersection point. The resulting cubic segments will // be chopped such that a box of radius 'padRadius', centered at any point along the curve segment, // is guaranteed to not cross the tangent lines at the intersection point (a.k.a lines L & M). // // 'chops' will be filled with 0, 2, or 4 T values. The segments between T0..T1 and T2..T3 must be // drawn with quadratic splines instead of cubics. // // A loop intersection falls at two different T values, so this method takes Sk2f and computes the // padding for both in SIMD. static inline void find_chops_around_loop_intersection(float padRadius, Sk2f t2, Sk2f s2, const Sk2f& C0, const Sk2f& C1, ExcludedTerm skipTerm, float Cdet, SkSTArray<4, float>* chops) { SkASSERT(chops->empty()); SkASSERT(padRadius >= 0); padRadius /= std::abs(Cdet); // Scale this single value rather than all of C^-1 later on. // The parametric functions for distance from lines L & M are: // // l(T) = (T - Td)^2 * (T - Te) // m(T) = (T - Td) * (T - Te)^2 // // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware", // 4.3 Finding klmn: // // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf Sk2f T2 = t2/s2; // T2 is the double root of l(T). Sk2f T1 = SkNx_shuffle<1,0>(T2); // T1 is the other root of l(T). // Convert l(T), m(T) to power-basis form: // // | 1 1 | // |l(T) m(T)| = |T^3 T^2 T 1| * | l2 m2 | // | l1 m1 | // | l0 m0 | // // From here on we use Sk2f with "L" names, but the second lane will be for line M. Sk2f l2 = SkNx_fma(Sk2f(-2), T2, -T1); Sk2f l1 = T2 * SkNx_fma(Sk2f(2), T1, T2); Sk2f l0 = -T2*T2*T1; // The equation for line L can be found as follows: // // L = C^-1 * (l excluding skipTerm) // // (See comments for GrPathUtils::calcCubicInverseTransposePowerBasisMatrix.) // We are only interested in the normal to L, so only need the upper 2x2 of C^-1. And rather // than divide by determinant(C) here, we have already performed this divide on padRadius. Sk2f l2or1 = (ExcludedTerm::kLinearTerm == skipTerm) ? l2 : l1; Sk2f Lx = -C0[1]*l2or1 + C1[1]; // l3 is always 1. Sk2f Ly = C0[0]*l2or1 - C1[0]; // A box of radius "padRadius" is touching line L if "center dot L" is less than the Manhattan // with of L. (See rationale in are_collinear.) Sk2f Lwidth = Lx.abs() + Ly.abs(); Sk2f pad = Lwidth * padRadius; // Is l(T=0) outside the padding around line L? Sk2f lT0 = l0; // l(T=0) = |0 0 0 1| dot |1 l2 l1 l0| = l0 Sk2f outsideT0 = lT0.abs() - pad; // Is l(T=1) outside the padding around line L? Sk2f lT1 = (Sk2f(1) + l2 + l1 + l0).abs(); // l(T=1) = |1 1 1 1| dot |1 l2 l1 l0| Sk2f outsideT1 = lT1.abs() - pad; // Values for solving the cubic. Sk2f p, q, qqq, discr, numRoots, D; bool hasDiscr = false; // Values for calculating one root (rarely needed). Sk2f R, QQ; bool hasOneRootVals = false; // Values for calculating three roots. Sk2f P, cosTheta3; bool hasThreeRootVals = false; // Solve for the T values where l(T) = +pad and m(T) = -pad. for (int i = 0; i < 2; ++i) { float T = T2[i]; // T is the point we are chopping around. if ((T < 0 && outsideT0[i] >= 0) || (T > 1 && outsideT1[i] >= 0)) { // The padding around T is completely out of range. No point solving for it. continue; } if (!hasDiscr) { p = Sk2f(+.5f, -.5f) * pad; q = (1.f/3) * (T2 - T1); qqq = q*q*q; discr = qqq*p*2 + p*p; numRoots = (discr < 0).thenElse(3, 1); D = T2 - q; hasDiscr = true; } if (1 == numRoots[i]) { if (!hasOneRootVals) { Sk2f r = qqq + p; Sk2f s = r.abs() + discr.sqrt(); R = (r > 0).thenElse(-s, s); QQ = q*q; hasOneRootVals = true; } float A = cbrtf(R[i]); float B = A != 0 ? QQ[i]/A : 0; // When there is only one root, ine L chops from root..1, line M chops from 0..root. if (1 == i) { chops->push_back(0); } chops->push_back(A + B + D[i]); if (0 == i) { chops->push_back(1); } continue; } if (!hasThreeRootVals) { P = q.abs() * -2; cosTheta3 = (q >= 0).thenElse(1, -1) + p / qqq.abs(); hasThreeRootVals = true; } static constexpr float k2PiOver3 = 2 * SK_ScalarPI / 3; float theta = std::acos(cosTheta3[i]) * (1.f/3); float roots[3] = {P[i] * std::cos(theta) + D[i], P[i] * std::cos(theta + k2PiOver3) + D[i], P[i] * std::cos(theta - k2PiOver3) + D[i]}; // Sort the three roots. swap_if_greater(roots[0], roots[1]); swap_if_greater(roots[1], roots[2]); swap_if_greater(roots[0], roots[1]); // Line L chops around the first 2 roots, line M chops around the second 2. chops->push_back_n(2, &roots[i]); } } void GrCCGeometry::cubicTo(const SkPoint P[4], float inflectPad, float loopIntersectPad) { SkASSERT(fBuildingContour); SkASSERT(P[0] == fPoints.back()); // Don't crunch on the curve or inflate geometry if it is nearly flat (or just very small). // Flat curves can break the math below. if (are_collinear(P)) { Sk2f p0 = Sk2f::Load(P); Sk2f p3 = Sk2f::Load(P+3); this->appendLine(p0, p3); return; } Sk2f p0 = Sk2f::Load(P); Sk2f p1 = Sk2f::Load(P+1); Sk2f p2 = Sk2f::Load(P+2); Sk2f p3 = Sk2f::Load(P+3); // Also detect near-quadratics ahead of time. Sk2f tan0, tan1, c; get_cubic_tangents(p0, p1, p2, p3, &tan0, &tan1); if (is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, &c)) { this->appendQuadratics(p0, c, p3); return; } double tt[2], ss[2], D[4]; fCurrCubicType = SkClassifyCubic(P, tt, ss, D); SkASSERT(!SkCubicIsDegenerate(fCurrCubicType)); Sk2f t = Sk2f(static_cast(tt[0]), static_cast(tt[1])); Sk2f s = Sk2f(static_cast(ss[0]), static_cast(ss[1])); ExcludedTerm skipTerm = (std::abs(D[2]) > std::abs(D[1])) ? ExcludedTerm::kQuadraticTerm : ExcludedTerm::kLinearTerm; Sk2f C0 = SkNx_fma(Sk2f(3), p1 - p2, p3 - p0); Sk2f C1 = (ExcludedTerm::kLinearTerm == skipTerm ? SkNx_fma(Sk2f(-2), p1, p0 + p2) : p1 - p0) * 3; Sk2f C0x1 = C0 * SkNx_shuffle<1,0>(C1); float Cdet = C0x1[0] - C0x1[1]; SkSTArray<4, float> chops; if (SkCubicType::kLoop != fCurrCubicType) { find_chops_around_inflection_points(inflectPad, t, s, C0, C1, skipTerm, Cdet, &chops); } else { find_chops_around_loop_intersection(loopIntersectPad, t, s, C0, C1, skipTerm, Cdet, &chops); } if (4 == chops.count() && chops[1] >= chops[2]) { // This just the means the KLM roots are so close that their paddings overlap. We will // approximate the entire middle section, but still have it chopped midway. For loops this // chop guarantees the append code only sees convex segments. Otherwise, it means we are (at // least almost) a cusp and the chop makes sure we get a sharp point. Sk2f ts = t * SkNx_shuffle<1,0>(s); chops[1] = chops[2] = (ts[0] + ts[1]) / (2*s[0]*s[1]); } #ifdef SK_DEBUG for (int i = 1; i < chops.count(); ++i) { SkASSERT(chops[i] >= chops[i - 1]); } #endif this->appendCubics(AppendCubicMode::kLiteral, p0, p1, p2, p3, chops.begin(), chops.count()); } static inline void chop_cubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3, float T, Sk2f* ab, Sk2f* abc, Sk2f* abcd, Sk2f* bcd, Sk2f* cd) { Sk2f TT = T; *ab = lerp(p0, p1, TT); Sk2f bc = lerp(p1, p2, TT); *cd = lerp(p2, p3, TT); *abc = lerp(*ab, bc, TT); *bcd = lerp(bc, *cd, TT); *abcd = lerp(*abc, *bcd, TT); } void GrCCGeometry::appendCubics(AppendCubicMode mode, const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3, const float chops[], int numChops, float localT0, float localT1) { if (numChops) { SkASSERT(numChops > 0); int midChopIdx = numChops/2; float T = chops[midChopIdx]; // Chops alternate between literal and approximate mode. AppendCubicMode rightMode = (AppendCubicMode)((bool)mode ^ (midChopIdx & 1) ^ 1); if (T <= localT0) { // T is outside 0..1. Append the right side only. this->appendCubics(rightMode, p0, p1, p2, p3, &chops[midChopIdx + 1], numChops - midChopIdx - 1, localT0, localT1); return; } if (T >= localT1) { // T is outside 0..1. Append the left side only. this->appendCubics(mode, p0, p1, p2, p3, chops, midChopIdx, localT0, localT1); return; } float localT = (T - localT0) / (localT1 - localT0); Sk2f p01, p02, pT, p11, p12; chop_cubic(p0, p1, p2, p3, localT, &p01, &p02, &pT, &p11, &p12); this->appendCubics(mode, p0, p01, p02, pT, chops, midChopIdx, localT0, T); this->appendCubics(rightMode, pT, p11, p12, p3, &chops[midChopIdx + 1], numChops - midChopIdx - 1, T, localT1); return; } this->appendCubics(mode, p0, p1, p2, p3); } void GrCCGeometry::appendCubics(AppendCubicMode mode, const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3, int maxSubdivisions) { if (SkCubicType::kLoop != fCurrCubicType) { // Serpentines and cusps are always monotonic after chopping around inflection points. SkASSERT(!SkCubicIsDegenerate(fCurrCubicType)); if (AppendCubicMode::kApproximate == mode) { // This section passes through an inflection point, so we can get away with a flat line. // This can cause some curves to feel slightly more flat when inspected rigorously back // and forth against another renderer, but for now this seems acceptable given the // simplicity. this->appendLine(p0, p3); return; } } else { Sk2f tan0, tan1; get_cubic_tangents(p0, p1, p2, p3, &tan0, &tan1); if (maxSubdivisions && !is_convex_curve_monotonic(p0, tan0, p3, tan1)) { this->chopAndAppendCubicAtMidTangent(mode, p0, p1, p2, p3, tan0, tan1, maxSubdivisions - 1); return; } if (AppendCubicMode::kApproximate == mode) { Sk2f c; if (!is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, &c) && maxSubdivisions) { this->chopAndAppendCubicAtMidTangent(mode, p0, p1, p2, p3, tan0, tan1, maxSubdivisions - 1); return; } this->appendMonotonicQuadratic(p0, c, p3); return; } } // Don't send curves to the GPU if we know they are nearly flat (or just very small). // Since the cubic segment is known to be convex at this point, our flatness check is simple. if (are_collinear(p0, (p1 + p2) * .5f, p3)) { this->appendLine(p0, p3); return; } SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1])); SkASSERT((p0 != p3).anyTrue()); p1.store(&fPoints.push_back()); p2.store(&fPoints.push_back()); p3.store(&fPoints.push_back()); fVerbs.push_back(Verb::kMonotonicCubicTo); ++fCurrContourTallies.fCubics; } // Given a convex curve segment with the following order-2 tangent function: // // |C2x C2y| // tan = some_scale * |dx/dt dy/dt| = |t^2 t 1| * |C1x C1y| // |C0x C0y| // // This function finds the T value whose tangent angle is halfway between the tangents at T=0 and // T=1 (tan0 and tan1). static inline float find_midtangent(const Sk2f& tan0, const Sk2f& tan1, const Sk2f& C2, const Sk2f& C1, const Sk2f& C0) { // Tangents point in the direction of increasing T, so tan0 and -tan1 both point toward the // midtangent. 'n' will therefore bisect tan0 and -tan1, giving us the normal to the midtangent. // // n dot midtangent = 0 // Sk2f n = normalize(tan0) - normalize(tan1); // Find the T value at the midtangent. This is a simple quadratic equation: // // midtangent dot n = 0 // // (|t^2 t 1| * C) dot n = 0 // // |t^2 t 1| dot C*n = 0 // // First find coeffs = C*n. Sk4f C[2]; Sk2f::Store4(C, C2, C1, C0, 0); Sk4f coeffs = C[0]*n[0] + C[1]*n[1]; // Now solve the quadratic. float a = coeffs[0], b = coeffs[1], c = coeffs[2]; float discr = b*b - 4*a*c; if (discr < 0) { return 0; // This will only happen if the curve is a line. } // The roots are q/a and c/q. Pick the one closer to T=.5. float q = -.5f * (b + copysignf(std::sqrt(discr), b)); float r = .5f*q*a; return std::abs(q*q - r) < std::abs(a*c - r) ? q/a : c/q; } inline void GrCCGeometry::chopAndAppendCubicAtMidTangent(AppendCubicMode mode, const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3, const Sk2f& tan0, const Sk2f& tan1, int maxFutureSubdivisions) { float midT = find_midtangent(tan0, tan1, p3 + (p1 - p2)*3 - p0, (p0 - p1*2 + p2)*2, p1 - p0); // Use positive logic since NaN fails comparisons. (However midT should not be NaN since we cull // near-flat cubics in cubicTo().) if (!(midT > 0 && midT < 1)) { // The cubic is flat. Otherwise there would be a real midtangent inside T=0..1. this->appendLine(p0, p3); return; } Sk2f p01, p02, pT, p11, p12; chop_cubic(p0, p1, p2, p3, midT, &p01, &p02, &pT, &p11, &p12); this->appendCubics(mode, p0, p01, p02, pT, maxFutureSubdivisions); this->appendCubics(mode, pT, p11, p12, p3, maxFutureSubdivisions); } void GrCCGeometry::conicTo(const SkPoint P[3], float w) { SkASSERT(fBuildingContour); SkASSERT(P[0] == fPoints.back()); Sk2f p0 = Sk2f::Load(P); Sk2f p1 = Sk2f::Load(P+1); Sk2f p2 = Sk2f::Load(P+2); Sk2f tan0 = p1 - p0; Sk2f tan1 = p2 - p1; if (!is_convex_curve_monotonic(p0, tan0, p2, tan1)) { // The derivative of a conic has a cumbersome order-4 denominator. However, this isn't // necessary if we are only interested in a vector in the same *direction* as a given // tangent line. Since the denominator scales dx and dy uniformly, we can throw it out // completely after evaluating the derivative with the standard quotient rule. This leaves // us with a simpler quadratic function that we use to find the midtangent. float midT = find_midtangent(tan0, tan1, (w - 1) * (p2 - p0), (p2 - p0) - 2*w*(p1 - p0), w*(p1 - p0)); // Use positive logic since NaN fails comparisons. (However midT should not be NaN since we // cull near-linear conics above. And while w=0 is flat, it's not a line and has valid // midtangents.) if (!(midT > 0 && midT < 1)) { // The conic is flat. Otherwise there would be a real midtangent inside T=0..1. this->appendLine(p0, p2); return; } // Chop the conic at midtangent to produce two monotonic segments. Sk4f p3d0 = Sk4f(p0[0], p0[1], 1, 0); Sk4f p3d1 = Sk4f(p1[0], p1[1], 1, 0) * w; Sk4f p3d2 = Sk4f(p2[0], p2[1], 1, 0); Sk4f midT4 = midT; Sk4f p3d01 = lerp(p3d0, p3d1, midT4); Sk4f p3d12 = lerp(p3d1, p3d2, midT4); Sk4f p3d012 = lerp(p3d01, p3d12, midT4); Sk2f midpoint = Sk2f(p3d012[0], p3d012[1]) / p3d012[2]; Sk2f ww = Sk2f(p3d01[2], p3d12[2]) * Sk2f(p3d012[2]).rsqrt(); this->appendMonotonicConic(p0, Sk2f(p3d01[0], p3d01[1]) / p3d01[2], midpoint, ww[0]); this->appendMonotonicConic(midpoint, Sk2f(p3d12[0], p3d12[1]) / p3d12[2], p2, ww[1]); return; } this->appendMonotonicConic(p0, p1, p2, w); } void GrCCGeometry::appendMonotonicConic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, float w) { SkASSERT(w >= 0); Sk2f base = p2 - p0; Sk2f baseAbs = base.abs(); float baseWidth = baseAbs[0] + baseAbs[1]; // Find the height of the curve. Max height always occurs at T=.5 for conics. Sk2f d = (p1 - p0) * SkNx_shuffle<1,0>(base); float h1 = std::abs(d[1] - d[0]); // Height of p1 above the base. float ht = h1*w, hs = 1 + w; // Height of the conic = ht/hs. // i.e. (ht/hs <= baseWidth * kFlatnessThreshold). Use "<=" in case base == 0. if (ht <= (baseWidth*hs) * kFlatnessThreshold) { // We are flat. (See rationale in are_collinear.) this->appendLine(p0, p2); return; } // i.e. (w > 1 && h1 - ht/hs < baseWidth). if (w > 1 && h1*hs - ht < baseWidth*hs) { // If we get within 1px of p1 when w > 1, we will pick up artifacts from the implicit // function's reflection. Chop at max height (T=.5) and draw a triangle instead. Sk2f p1w = p1*w; Sk2f ab = p0 + p1w; Sk2f bc = p1w + p2; Sk2f highpoint = (ab + bc) / (2*(1 + w)); this->appendLine(p0, highpoint); this->appendLine(highpoint, p2); return; } SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1])); SkASSERT((p0 != p2).anyTrue()); p1.store(&fPoints.push_back()); p2.store(&fPoints.push_back()); fConicWeights.push_back(w); fVerbs.push_back(Verb::kMonotonicConicTo); ++fCurrContourTallies.fConics; } GrCCGeometry::PrimitiveTallies GrCCGeometry::endContour() { SkASSERT(fBuildingContour); SkASSERT(fVerbs.count() >= fCurrContourTallies.fTriangles); // The fTriangles field currently contains this contour's starting verb index. We can now // use it to calculate the size of the contour's fan. int fanSize = fVerbs.count() - fCurrContourTallies.fTriangles; if (fPoints.back() == fCurrAnchorPoint) { --fanSize; fVerbs.push_back(Verb::kEndClosedContour); } else { fVerbs.push_back(Verb::kEndOpenContour); } fCurrContourTallies.fTriangles = SkTMax(fanSize - 2, 0); SkDEBUGCODE(fBuildingContour = false); return fCurrContourTallies; }