/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrCCCoverageProcessor.h" #include "GrMesh.h" #include "glsl/GrGLSLVertexGeoBuilder.h" using InputType = GrGLSLGeometryBuilder::InputType; using OutputType = GrGLSLGeometryBuilder::OutputType; using Shader = GrCCCoverageProcessor::Shader; /** * This class and its subclasses implement the coverage processor with geometry shaders. */ class GrCCCoverageProcessor::GSImpl : public GrGLSLGeometryProcessor { protected: GSImpl(std::unique_ptr shader) : fShader(std::move(shader)) {} void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor&, FPCoordTransformIter&& transformIter) final { this->setTransformDataHelper(SkMatrix::I(), pdman, &transformIter); } void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) final { const GrCCCoverageProcessor& proc = args.fGP.cast(); // The vertex shader simply forwards transposed x or y values to the geometry shader. SkASSERT(1 == proc.numAttribs()); gpArgs->fPositionVar.set(4 == proc.numInputPoints() ? kFloat4_GrSLType : kFloat3_GrSLType, proc.getAttrib(0).fName); // Geometry shader. GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; this->emitGeometryShader(proc, varyingHandler, args.fGeomBuilder, args.fRTAdjustName); varyingHandler->emitAttributes(proc); varyingHandler->setNoPerspective(); SkASSERT(!args.fFPCoordTransformHandler->nextCoordTransform()); // Fragment shader. fShader->emitFragmentCode(proc, args.fFragBuilder, args.fOutputColor, args.fOutputCoverage); } void emitGeometryShader(const GrCCCoverageProcessor& proc, GrGLSLVaryingHandler* varyingHandler, GrGLSLGeometryBuilder* g, const char* rtAdjust) const { int numInputPoints = proc.numInputPoints(); SkASSERT(3 == numInputPoints || 4 == numInputPoints); const char* posValues = (4 == numInputPoints) ? "sk_Position" : "sk_Position.xyz"; g->codeAppendf("float%ix2 pts = transpose(float2x%i(sk_in[0].%s, sk_in[1].%s));", numInputPoints, numInputPoints, posValues, posValues); GrShaderVar wind("wind", kHalf_GrSLType); g->declareGlobal(wind); g->codeAppend ("float area_x2 = determinant(float2x2(pts[0] - pts[1], pts[0] - pts[2]));"); if (4 == numInputPoints) { g->codeAppend ("area_x2 += determinant(float2x2(pts[0] - pts[2], pts[0] - pts[3]));"); } g->codeAppendf("%s = sign(area_x2);", wind.c_str()); SkString emitVertexFn; SkSTArray<2, GrShaderVar> emitArgs; const char* position = emitArgs.emplace_back("position", kFloat2_GrSLType).c_str(); const char* coverage = nullptr; if (RenderPass::kTriangleEdges == proc.fRenderPass) { coverage = emitArgs.emplace_back("coverage", kHalf_GrSLType).c_str(); } g->emitFunction(kVoid_GrSLType, "emitVertex", emitArgs.count(), emitArgs.begin(), [&]() { SkString fnBody; fShader->emitVaryings(varyingHandler, GrGLSLVarying::Scope::kGeoToFrag, &fnBody, position, coverage, wind.c_str()); g->emitVertex(&fnBody, position, rtAdjust); return fnBody; }().c_str(), &emitVertexFn); float bloat = kAABloatRadius; #ifdef SK_DEBUG if (proc.debugVisualizationsEnabled()) { bloat *= proc.debugBloat(); } #endif g->defineConstant("bloat", bloat); this->onEmitGeometryShader(g, wind, emitVertexFn.c_str()); } virtual void onEmitGeometryShader(GrGLSLGeometryBuilder*, const GrShaderVar& wind, const char* emitVertexFn) const = 0; virtual ~GSImpl() {} const std::unique_ptr fShader; typedef GrGLSLGeometryProcessor INHERITED; }; /** * Generates a conservative raster hull around a triangle. (See comments for RenderPass) */ class GSHull3Impl : public GrCCCoverageProcessor::GSImpl { public: GSHull3Impl(std::unique_ptr shader) : GSImpl(std::move(shader)) {} void onEmitGeometryShader(GrGLSLGeometryBuilder* g, const GrShaderVar& wind, const char* emitVertexFn) const override { Shader::GeometryVars vars; fShader->emitSetupCode(g, "pts", nullptr, wind.c_str(), &vars); const char* hullPts = vars.fHullVars.fAlternatePoints; if (!hullPts) { hullPts = "pts"; } // Visualize the input triangle as upright and equilateral, with a flat base. Paying special // attention to wind, we can identify the points as top, bottom-left, and bottom-right. // // NOTE: We generate the hull in 2 independent invocations, so each invocation designates // the corner it will begin with as the top. g->codeAppendf("int i = %s > 0 ? sk_InvocationID : 1 - sk_InvocationID;", wind.c_str()); g->codeAppendf("float2 top = %s[i];", hullPts); g->codeAppendf("float2 left = %s[%s > 0 ? (1 - i) * 2 : i + 1];", hullPts, wind.c_str()); g->codeAppendf("float2 right = %s[%s > 0 ? i + 1 : (1 - i) * 2];", hullPts, wind.c_str()); // Determine how much to outset the conservative raster hull from each of the three edges. g->codeAppend ("float2 leftbloat = float2(top.y > left.y ? +bloat : -bloat, " "top.x > left.x ? -bloat : +bloat);"); g->codeAppend ("float2 rightbloat = float2(right.y > top.y ? +bloat : -bloat, " "right.x > top.x ? -bloat : +bloat);"); g->codeAppend ("float2 downbloat = float2(left.y > right.y ? +bloat : -bloat, " "left.x > right.x ? -bloat : +bloat);"); // Here we generate the conservative raster geometry. It is the convex hull of 3 pixel-size // boxes centered on the input points, split between two invocations. This translates to a // polygon with either one, two, or three vertices at each input point, depending on how // sharp the corner is. For more details on conservative raster, see: // https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html g->codeAppendf("bool2 left_right_notequal = notEqual(leftbloat, rightbloat);"); g->codeAppend ("if (all(left_right_notequal)) {"); // The top corner will have three conservative raster vertices. Emit the // middle one first to the triangle strip. g->codeAppendf( "%s(top + float2(-leftbloat.y, leftbloat.x));", emitVertexFn); g->codeAppend ("}"); g->codeAppend ("if (any(left_right_notequal)) {"); // Second conservative raster vertex for the top corner. g->codeAppendf( "%s(top + rightbloat);", emitVertexFn); g->codeAppend ("}"); // Main interior body of the triangle. g->codeAppendf("%s(top + leftbloat);", emitVertexFn); g->codeAppendf("%s(right + rightbloat);", emitVertexFn); // Here the two invocations diverge. We can't symmetrically divide three triangle points // between two invocations, so each does the following: // // sk_InvocationID=0: Finishes the main interior body of the triangle. // sk_InvocationID=1: Remaining two conservative raster vertices for the third corner. g->codeAppendf("bool2 right_down_notequal = notEqual(rightbloat, downbloat);"); g->codeAppend ("if (any(right_down_notequal) || 0 == sk_InvocationID) {"); g->codeAppendf( "%s(sk_InvocationID == 0 ? left + leftbloat : right + downbloat);", emitVertexFn); g->codeAppend ("}"); g->codeAppend ("if (all(right_down_notequal) && 0 != sk_InvocationID) {"); g->codeAppendf( "%s(right + float2(-rightbloat.y, rightbloat.x));", emitVertexFn); g->codeAppend ("}"); g->configure(InputType::kLines, OutputType::kTriangleStrip, 6, 2); } }; /** * Generates a conservative raster hull around a convex quadrilateral. (See comments for RenderPass) */ class GSHull4Impl : public GrCCCoverageProcessor::GSImpl { public: GSHull4Impl(std::unique_ptr shader) : GSImpl(std::move(shader)) {} void onEmitGeometryShader(GrGLSLGeometryBuilder* g, const GrShaderVar& wind, const char* emitVertexFn) const override { Shader::GeometryVars vars; fShader->emitSetupCode(g, "pts", nullptr, wind.c_str(), &vars); const char* hullPts = vars.fHullVars.fAlternatePoints; if (!hullPts) { hullPts = "pts"; } // Visualize the input (convex) quadrilateral as a square. Paying special attention to wind, // we can identify the points by their corresponding corner. // // NOTE: We split the square down the diagonal from top-right to bottom-left, and generate // the hull in two independent invocations. Each invocation designates the corner it will // begin with as top-left. g->codeAppend ("int i = sk_InvocationID * 2;"); g->codeAppendf("float2 topleft = %s[i];", hullPts); g->codeAppendf("float2 topright = %s[%s > 0 ? i + 1 : 3 - i];", hullPts, wind.c_str()); g->codeAppendf("float2 bottomleft = %s[%s > 0 ? 3 - i : i + 1];", hullPts, wind.c_str()); g->codeAppendf("float2 bottomright = %s[2 - i];", hullPts); // Determine how much to outset the conservative raster hull from the relevant edges. g->codeAppend ("float2 leftbloat = float2(topleft.y > bottomleft.y ? +bloat : -bloat, " "topleft.x > bottomleft.x ? -bloat : bloat);"); g->codeAppend ("float2 upbloat = float2(topright.y > topleft.y ? +bloat : -bloat, " "topright.x > topleft.x ? -bloat : +bloat);"); g->codeAppend ("float2 rightbloat = float2(bottomright.y > topright.y ? +bloat : -bloat, " "bottomright.x > topright.x ? -bloat : +bloat);"); // Here we generate the conservative raster geometry. It is the convex hull of 4 pixel-size // boxes centered on the input points, split evenly between two invocations. This translates // to a polygon with either one, two, or three vertices at each input point, depending on // how sharp the corner is. For more details on conservative raster, see: // https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html g->codeAppendf("bool2 left_up_notequal = notEqual(leftbloat, upbloat);"); g->codeAppend ("if (all(left_up_notequal)) {"); // The top-left corner will have three conservative raster vertices. // Emit the middle one first to the triangle strip. g->codeAppendf( "%s(topleft + float2(-leftbloat.y, leftbloat.x));", emitVertexFn); g->codeAppend ("}"); g->codeAppend ("if (any(left_up_notequal)) {"); // Second conservative raster vertex for the top-left corner. g->codeAppendf( "%s(topleft + leftbloat);", emitVertexFn); g->codeAppend ("}"); // Main interior body of this invocation's half of the hull. g->codeAppendf("%s(topleft + upbloat);", emitVertexFn); g->codeAppendf("%s(bottomleft + leftbloat);", emitVertexFn); g->codeAppendf("%s(topright + upbloat);", emitVertexFn); // Remaining two conservative raster vertices for the top-right corner. g->codeAppendf("bool2 up_right_notequal = notEqual(upbloat, rightbloat);"); g->codeAppend ("if (any(up_right_notequal)) {"); g->codeAppendf( "%s(topright + rightbloat);", emitVertexFn); g->codeAppend ("}"); g->codeAppend ("if (all(up_right_notequal)) {"); g->codeAppendf( "%s(topright + float2(-upbloat.y, upbloat.x));", emitVertexFn); g->codeAppend ("}"); g->configure(InputType::kLines, OutputType::kTriangleStrip, 7, 2); } }; /** * Generates conservatives around each edge of a triangle. (See comments for RenderPass) */ class GSEdgeImpl : public GrCCCoverageProcessor::GSImpl { public: GSEdgeImpl(std::unique_ptr shader) : GSImpl(std::move(shader)) {} void onEmitGeometryShader(GrGLSLGeometryBuilder* g, const GrShaderVar& wind, const char* emitVertexFn) const override { fShader->emitSetupCode(g, "pts", "sk_InvocationID", wind.c_str(), nullptr); g->codeAppend ("int nextidx = 2 != sk_InvocationID ? sk_InvocationID + 1 : 0;"); g->codeAppendf("float2 left = pts[%s > 0 ? sk_InvocationID : nextidx];", wind.c_str()); g->codeAppendf("float2 right = pts[%s > 0 ? nextidx : sk_InvocationID];", wind.c_str()); Shader::EmitEdgeDistanceEquation(g, "left", "right", "float3 edge_distance_equation"); // Which quadrant does the vector from left -> right fall into? g->codeAppend ("float2 qlr = sign(right - left);"); g->codeAppend ("float2x2 outer_pts = float2x2(left - bloat * qlr, right + bloat * qlr);"); g->codeAppend ("half2 outer_coverage = edge_distance_equation.xy * outer_pts + " "edge_distance_equation.z;"); g->codeAppend ("float2 d1 = float2(qlr.y, -qlr.x);"); g->codeAppend ("float2 d2 = d1;"); g->codeAppend ("bool aligned = qlr.x == 0 || qlr.y == 0;"); g->codeAppend ("if (aligned) {"); g->codeAppend ( "d1 -= qlr;"); g->codeAppend ( "d2 += qlr;"); g->codeAppend ("}"); // Emit the convex hull of 2 pixel-size boxes centered on the endpoints of the edge. Each // invocation emits a different edge. Emit negative coverage that subtracts the appropiate // amount back out from the hull we drew above. g->codeAppend ("if (!aligned) {"); g->codeAppendf( "%s(outer_pts[0], outer_coverage[0]);", emitVertexFn); g->codeAppend ("}"); g->codeAppendf("%s(left + bloat * d1, -1);", emitVertexFn); g->codeAppendf("%s(left - bloat * d2, 0);", emitVertexFn); g->codeAppendf("%s(right + bloat * d2, -1);", emitVertexFn); g->codeAppendf("%s(right - bloat * d1, 0);", emitVertexFn); g->codeAppend ("if (!aligned) {"); g->codeAppendf( "%s(outer_pts[1], outer_coverage[1]);", emitVertexFn); g->codeAppend ("}"); g->configure(InputType::kLines, OutputType::kTriangleStrip, 6, 3); } }; /** * Generates conservative rasters around corners. (See comments for RenderPass) */ class GSCornerImpl : public GrCCCoverageProcessor::GSImpl { public: GSCornerImpl(std::unique_ptr shader, int numCorners) : GSImpl(std::move(shader)), fNumCorners(numCorners) {} void onEmitGeometryShader(GrGLSLGeometryBuilder* g, const GrShaderVar& wind, const char* emitVertexFn) const override { Shader::GeometryVars vars; fShader->emitSetupCode(g, "pts", "sk_InvocationID", wind.c_str(), &vars); const char* corner = vars.fCornerVars.fPoint; SkASSERT(corner); g->codeAppendf("%s(%s + float2(-bloat, -bloat));", emitVertexFn, corner); g->codeAppendf("%s(%s + float2(-bloat, +bloat));", emitVertexFn, corner); g->codeAppendf("%s(%s + float2(+bloat, -bloat));", emitVertexFn, corner); g->codeAppendf("%s(%s + float2(+bloat, +bloat));", emitVertexFn, corner); g->configure(InputType::kLines, OutputType::kTriangleStrip, 4, fNumCorners); } private: const int fNumCorners; }; void GrCCCoverageProcessor::initGS() { SkASSERT(Impl::kGeometryShader == fImpl); if (RenderPassIsCubic(fRenderPass)) { this->addVertexAttrib("x_or_y_values", kFloat4_GrVertexAttribType); // (See appendMesh.) SkASSERT(sizeof(CubicInstance) == this->getVertexStride() * 2); } else { this->addVertexAttrib("x_or_y_values", kFloat3_GrVertexAttribType); // (See appendMesh.) SkASSERT(sizeof(TriangleInstance) == this->getVertexStride() * 2); } this->setWillUseGeoShader(); } void GrCCCoverageProcessor::appendGSMesh(GrBuffer* instanceBuffer, int instanceCount, int baseInstance, SkTArray* out) const { // GSImpl doesn't actually make instanced draw calls. Instead, we feed transposed x,y point // values to the GPU in a regular vertex array and draw kLines (see initGS). Then, each vertex // invocation receives either the shape's x or y values as inputs, which it forwards to the // geometry shader. SkASSERT(Impl::kGeometryShader == fImpl); GrMesh& mesh = out->emplace_back(GrPrimitiveType::kLines); mesh.setNonIndexedNonInstanced(instanceCount * 2); mesh.setVertexData(instanceBuffer, baseInstance * 2); } GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGSImpl(std::unique_ptr shadr) const { switch (fRenderPass) { case RenderPass::kTriangleHulls: return new GSHull3Impl(std::move(shadr)); case RenderPass::kQuadraticHulls: case RenderPass::kCubicHulls: return new GSHull4Impl(std::move(shadr)); case RenderPass::kTriangleEdges: return new GSEdgeImpl(std::move(shadr)); case RenderPass::kTriangleCorners: return new GSCornerImpl(std::move(shadr), 3); case RenderPass::kQuadraticCorners: case RenderPass::kCubicCorners: return new GSCornerImpl(std::move(shadr), 2); } SK_ABORT("Invalid RenderPass"); return nullptr; }