/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrBatch_DEFINED #define GrBatch_DEFINED #include "../private/SkAtomics.h" #include "GrGpuResource.h" #include "GrNonAtomicRef.h" #include "SkMatrix.h" #include "SkRect.h" #include "SkString.h" #include class GrCaps; class GrGpuCommandBuffer; class GrBatchFlushState; class GrRenderTarget; /** * GrBatch is the base class for all Ganesh deferred geometry generators. To facilitate * reorderable batching, Ganesh does not generate geometry inline with draw calls. Instead, it * captures the arguments to the draw and then generates the geometry on demand. This gives GrBatch * subclasses complete freedom to decide how / what they can batch. * * Batches are created when GrContext processes a draw call. Batches of the same subclass may be * merged using combineIfPossible. When two batches merge, one takes on the union of the data * and the other is left empty. The merged batch becomes responsible for drawing the data from both * the original batches. * * If there are any possible optimizations which might require knowing more about the full state of * the draw, ie whether or not the GrBatch is allowed to tweak alpha for coverage, then this * information will be communicated to the GrBatch prior to geometry generation. * * The bounds of the batch must contain all the vertices in device space *irrespective* of the clip. * The bounds are used in determining which clip elements must be applied and thus the bounds cannot * in turn depend upon the clip. */ #define GR_BATCH_SPEW 0 #if GR_BATCH_SPEW #define GrBATCH_INFO(...) SkDebugf(__VA_ARGS__) #define GrBATCH_SPEW(code) code #else #define GrBATCH_SPEW(code) #define GrBATCH_INFO(...) #endif // A helper macro to generate a class static id #define DEFINE_BATCH_CLASS_ID \ static uint32_t ClassID() { \ static uint32_t kClassID = GenBatchClassID(); \ return kClassID; \ } class GrBatch : public GrNonAtomicRef { public: GrBatch(uint32_t classID); virtual ~GrBatch(); virtual const char* name() const = 0; bool combineIfPossible(GrBatch* that, const GrCaps& caps) { if (this->classID() != that->classID()) { return false; } return this->onCombineIfPossible(that, caps); } const SkRect& bounds() const { SkASSERT(kUninitialized_BoundsFlag != fBoundsFlags); return fBounds; } bool hasAABloat() const { SkASSERT(fBoundsFlags != kUninitialized_BoundsFlag); return SkToBool(fBoundsFlags & kAABloat_BoundsFlag); } bool hasZeroArea() const { SkASSERT(fBoundsFlags != kUninitialized_BoundsFlag); return SkToBool(fBoundsFlags & kZeroArea_BoundsFlag); } void* operator new(size_t size); void operator delete(void* target); void* operator new(size_t size, void* placement) { return ::operator new(size, placement); } void operator delete(void* target, void* placement) { ::operator delete(target, placement); } /** * Helper for safely down-casting to a GrBatch subclass */ template const T& cast() const { SkASSERT(T::ClassID() == this->classID()); return *static_cast(this); } template T* cast() { SkASSERT(T::ClassID() == this->classID()); return static_cast(this); } uint32_t classID() const { SkASSERT(kIllegalBatchID != fClassID); return fClassID; } // We lazily initialize the uniqueID because currently the only user is GrAuditTrail uint32_t uniqueID() const { if (kIllegalBatchID == fUniqueID) { fUniqueID = GenBatchID(); } return fUniqueID; } SkDEBUGCODE(bool isUsed() const { return fUsed; }) /** Called prior to drawing. The batch should perform any resource creation necessary to to quickly issue its draw when draw is called. */ void prepare(GrBatchFlushState* state) { this->onPrepare(state); } /** Issues the batches commands to GrGpu. */ void draw(GrBatchFlushState* state, const SkRect& bounds) { this->onDraw(state, bounds); } /** Used to block batching across render target changes. Remove this once we store GrBatches for different RTs in different targets. */ // TODO: this needs to be updated to return GrSurfaceProxy::UniqueID virtual GrGpuResource::UniqueID renderTargetUniqueID() const = 0; /** Used for spewing information about batches when debugging. */ virtual SkString dumpInfo() const { SkString string; string.appendf("BatchBounds: [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n", fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom); return string; } /** Can remove this when multi-draw-buffer lands */ virtual GrRenderTarget* renderTarget() const = 0; protected: /** * Indicates that the batch will produce geometry that extends beyond its bounds for the * purpose of ensuring that the fragment shader runs on partially covered pixels for * non-MSAA antialiasing. */ enum class HasAABloat { kYes, kNo }; /** * Indicates that the geometry represented by the batch has zero area (i.e. it is hairline * or points). */ enum class IsZeroArea { kYes, kNo }; void setBounds(const SkRect& newBounds, HasAABloat aabloat, IsZeroArea zeroArea) { fBounds = newBounds; this->setBoundsFlags(aabloat, zeroArea); } void setTransformedBounds(const SkRect& srcBounds, const SkMatrix& m, HasAABloat aabloat, IsZeroArea zeroArea) { m.mapRect(&fBounds, srcBounds); this->setBoundsFlags(aabloat, zeroArea); } void joinBounds(const GrBatch& that) { if (that.hasAABloat()) { fBoundsFlags |= kAABloat_BoundsFlag; } if (that.hasZeroArea()) { fBoundsFlags |= kZeroArea_BoundsFlag; } return fBounds.joinPossiblyEmptyRect(that.fBounds); } void replaceBounds(const GrBatch& that) { fBounds = that.fBounds; fBoundsFlags = that.fBoundsFlags; } static uint32_t GenBatchClassID() { return GenID(&gCurrBatchClassID); } private: virtual bool onCombineIfPossible(GrBatch*, const GrCaps& caps) = 0; virtual void onPrepare(GrBatchFlushState*) = 0; virtual void onDraw(GrBatchFlushState*, const SkRect& bounds) = 0; static uint32_t GenID(int32_t* idCounter) { // The atomic inc returns the old value not the incremented value. So we add // 1 to the returned value. uint32_t id = static_cast(sk_atomic_inc(idCounter)) + 1; if (!id) { SkFAIL("This should never wrap as it should only be called once for each GrBatch " "subclass."); } return id; } void setBoundsFlags(HasAABloat aabloat, IsZeroArea zeroArea) { fBoundsFlags = 0; fBoundsFlags |= (HasAABloat::kYes == aabloat) ? kAABloat_BoundsFlag : 0; fBoundsFlags |= (IsZeroArea ::kYes == zeroArea) ? kZeroArea_BoundsFlag : 0; } enum { kIllegalBatchID = 0, }; enum BoundsFlags { kAABloat_BoundsFlag = 0x1, kZeroArea_BoundsFlag = 0x2, SkDEBUGCODE(kUninitialized_BoundsFlag = 0x4) }; SkDEBUGCODE(bool fUsed;) const uint16_t fClassID; uint16_t fBoundsFlags; static uint32_t GenBatchID() { return GenID(&gCurrBatchUniqueID); } mutable uint32_t fUniqueID; SkRect fBounds; static int32_t gCurrBatchUniqueID; static int32_t gCurrBatchClassID; }; #endif