/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrAALinearizingConvexPathRenderer.h" #include "GrAAConvexTessellator.h" #include "GrBatchFlushState.h" #include "GrBatchTest.h" #include "GrContext.h" #include "GrDefaultGeoProcFactory.h" #include "GrGeometryProcessor.h" #include "GrInvariantOutput.h" #include "GrPathUtils.h" #include "GrProcessor.h" #include "GrPipelineBuilder.h" #include "GrStyle.h" #include "SkGeometry.h" #include "SkString.h" #include "SkTraceEvent.h" #include "SkPathPriv.h" #include "batches/GrVertexBatch.h" #include "glsl/GrGLSLGeometryProcessor.h" static const int DEFAULT_BUFFER_SIZE = 100; // The thicker the stroke, the harder it is to produce high-quality results using tessellation. For // the time being, we simply drop back to software rendering above this stroke width. static const SkScalar kMaxStrokeWidth = 20.0; GrAALinearizingConvexPathRenderer::GrAALinearizingConvexPathRenderer() { } /////////////////////////////////////////////////////////////////////////////// bool GrAALinearizingConvexPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const { if (!args.fAntiAlias) { return false; } if (!args.fShape->knownToBeConvex()) { return false; } if (args.fShape->style().pathEffect()) { return false; } if (args.fShape->inverseFilled()) { return false; } const SkStrokeRec& stroke = args.fShape->style().strokeRec(); if (stroke.getStyle() == SkStrokeRec::kStroke_Style || stroke.getStyle() == SkStrokeRec::kStrokeAndFill_Style) { if (!args.fViewMatrix->isSimilarity()) { return false; } SkScalar strokeWidth = args.fViewMatrix->getMaxScale() * stroke.getWidth(); if (strokeWidth < 1.0f && stroke.getStyle() == SkStrokeRec::kStroke_Style) { return false; } return strokeWidth <= kMaxStrokeWidth && args.fShape->knownToBeClosed() && stroke.getJoin() != SkPaint::Join::kRound_Join; } return stroke.getStyle() == SkStrokeRec::kFill_Style; } // extract the result vertices and indices from the GrAAConvexTessellator static void extract_verts(const GrAAConvexTessellator& tess, void* vertices, size_t vertexStride, GrColor color, uint16_t firstIndex, uint16_t* idxs, bool tweakAlphaForCoverage) { intptr_t verts = reinterpret_cast(vertices); for (int i = 0; i < tess.numPts(); ++i) { *((SkPoint*)((intptr_t)verts + i * vertexStride)) = tess.point(i); } // Make 'verts' point to the colors verts += sizeof(SkPoint); for (int i = 0; i < tess.numPts(); ++i) { if (tweakAlphaForCoverage) { SkASSERT(SkScalarRoundToInt(255.0f * tess.coverage(i)) <= 255); unsigned scale = SkScalarRoundToInt(255.0f * tess.coverage(i)); GrColor scaledColor = (0xff == scale) ? color : SkAlphaMulQ(color, scale); *reinterpret_cast(verts + i * vertexStride) = scaledColor; } else { *reinterpret_cast(verts + i * vertexStride) = color; *reinterpret_cast(verts + i * vertexStride + sizeof(GrColor)) = tess.coverage(i); } } for (int i = 0; i < tess.numIndices(); ++i) { idxs[i] = tess.index(i) + firstIndex; } } static sk_sp create_fill_gp(bool tweakAlphaForCoverage, const SkMatrix& viewMatrix, bool usesLocalCoords, bool coverageIgnored) { using namespace GrDefaultGeoProcFactory; Color color(Color::kAttribute_Type); Coverage::Type coverageType; // TODO remove coverage if coverage is ignored /*if (coverageIgnored) { coverageType = Coverage::kNone_Type; } else*/ if (tweakAlphaForCoverage) { coverageType = Coverage::kSolid_Type; } else { coverageType = Coverage::kAttribute_Type; } Coverage coverage(coverageType); LocalCoords localCoords(usesLocalCoords ? LocalCoords::kUsePosition_Type : LocalCoords::kUnused_Type); return MakeForDeviceSpace(color, coverage, localCoords, viewMatrix); } class AAFlatteningConvexPathBatch : public GrVertexBatch { public: DEFINE_BATCH_CLASS_ID AAFlatteningConvexPathBatch(GrColor color, const SkMatrix& viewMatrix, const SkPath& path, SkScalar strokeWidth, SkStrokeRec::Style style, SkPaint::Join join, SkScalar miterLimit) : INHERITED(ClassID()) { fGeoData.emplace_back(Geometry{ color, viewMatrix, path, strokeWidth, style, join, miterLimit }); // compute bounds SkRect bounds = path.getBounds(); SkScalar w = strokeWidth; if (w > 0) { w /= 2; // If the half stroke width is < 1 then we effectively fallback to bevel joins. if (SkPaint::kMiter_Join == join && w > 1.f) { w *= miterLimit; } bounds.outset(w, w); } this->setTransformedBounds(bounds, viewMatrix, HasAABloat::kYes, IsZeroArea::kNo); } const char* name() const override { return "AAConvexBatch"; } void computePipelineOptimizations(GrInitInvariantOutput* color, GrInitInvariantOutput* coverage, GrBatchToXPOverrides* overrides) const override { // When this is called on a batch, there is only one geometry bundle color->setKnownFourComponents(fGeoData[0].fColor); coverage->setUnknownSingleComponent(); } private: void initBatchTracker(const GrXPOverridesForBatch& overrides) override { // Handle any color overrides if (!overrides.readsColor()) { fGeoData[0].fColor = GrColor_ILLEGAL; } overrides.getOverrideColorIfSet(&fGeoData[0].fColor); // setup batch properties fBatch.fColorIgnored = !overrides.readsColor(); fBatch.fColor = fGeoData[0].fColor; fBatch.fUsesLocalCoords = overrides.readsLocalCoords(); fBatch.fCoverageIgnored = !overrides.readsCoverage(); fBatch.fLinesOnly = SkPath::kLine_SegmentMask == fGeoData[0].fPath.getSegmentMasks(); fBatch.fCanTweakAlphaForCoverage = overrides.canTweakAlphaForCoverage(); } void draw(GrVertexBatch::Target* target, const GrGeometryProcessor* gp, int vertexCount, size_t vertexStride, void* vertices, int indexCount, uint16_t* indices) const { if (vertexCount == 0 || indexCount == 0) { return; } const GrBuffer* vertexBuffer; GrMesh mesh; int firstVertex; void* verts = target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer, &firstVertex); if (!verts) { SkDebugf("Could not allocate vertices\n"); return; } memcpy(verts, vertices, vertexCount * vertexStride); const GrBuffer* indexBuffer; int firstIndex; uint16_t* idxs = target->makeIndexSpace(indexCount, &indexBuffer, &firstIndex); if (!idxs) { SkDebugf("Could not allocate indices\n"); return; } memcpy(idxs, indices, indexCount * sizeof(uint16_t)); mesh.initIndexed(kTriangles_GrPrimitiveType, vertexBuffer, indexBuffer, firstVertex, firstIndex, vertexCount, indexCount); target->draw(gp, mesh); } void onPrepareDraws(Target* target) const override { bool canTweakAlphaForCoverage = this->canTweakAlphaForCoverage(); // Setup GrGeometryProcessor sk_sp gp(create_fill_gp(canTweakAlphaForCoverage, this->viewMatrix(), this->usesLocalCoords(), this->coverageIgnored())); if (!gp) { SkDebugf("Couldn't create a GrGeometryProcessor\n"); return; } size_t vertexStride = gp->getVertexStride(); SkASSERT(canTweakAlphaForCoverage ? vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorAttr) : vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorCoverageAttr)); int instanceCount = fGeoData.count(); int vertexCount = 0; int indexCount = 0; int maxVertices = DEFAULT_BUFFER_SIZE; int maxIndices = DEFAULT_BUFFER_SIZE; uint8_t* vertices = (uint8_t*) sk_malloc_throw(maxVertices * vertexStride); uint16_t* indices = (uint16_t*) sk_malloc_throw(maxIndices * sizeof(uint16_t)); for (int i = 0; i < instanceCount; i++) { const Geometry& args = fGeoData[i]; GrAAConvexTessellator tess(args.fStyle, args.fStrokeWidth, args.fJoin, args.fMiterLimit); if (!tess.tessellate(args.fViewMatrix, args.fPath)) { continue; } int currentIndices = tess.numIndices(); SkASSERT(currentIndices <= UINT16_MAX); if (indexCount + currentIndices > UINT16_MAX) { // if we added the current instance, we would overflow the indices we can store in a // uint16_t. Draw what we've got so far and reset. this->draw(target, gp.get(), vertexCount, vertexStride, vertices, indexCount, indices); vertexCount = 0; indexCount = 0; } int currentVertices = tess.numPts(); if (vertexCount + currentVertices > maxVertices) { maxVertices = SkTMax(vertexCount + currentVertices, maxVertices * 2); vertices = (uint8_t*) sk_realloc_throw(vertices, maxVertices * vertexStride); } if (indexCount + currentIndices > maxIndices) { maxIndices = SkTMax(indexCount + currentIndices, maxIndices * 2); indices = (uint16_t*) sk_realloc_throw(indices, maxIndices * sizeof(uint16_t)); } extract_verts(tess, vertices + vertexStride * vertexCount, vertexStride, args.fColor, vertexCount, indices + indexCount, canTweakAlphaForCoverage); vertexCount += currentVertices; indexCount += currentIndices; } this->draw(target, gp.get(), vertexCount, vertexStride, vertices, indexCount, indices); sk_free(vertices); sk_free(indices); } bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { AAFlatteningConvexPathBatch* that = t->cast(); if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), that->bounds(), caps)) { return false; } SkASSERT(this->usesLocalCoords() == that->usesLocalCoords()); if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) { return false; } // In the event of two batches, one who can tweak, one who cannot, we just fall back to // not tweaking if (this->canTweakAlphaForCoverage() != that->canTweakAlphaForCoverage()) { fBatch.fCanTweakAlphaForCoverage = false; } fGeoData.push_back_n(that->fGeoData.count(), that->fGeoData.begin()); this->joinBounds(*that); return true; } GrColor color() const { return fBatch.fColor; } bool linesOnly() const { return fBatch.fLinesOnly; } bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; } bool canTweakAlphaForCoverage() const { return fBatch.fCanTweakAlphaForCoverage; } const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; } bool coverageIgnored() const { return fBatch.fCoverageIgnored; } struct BatchTracker { GrColor fColor; bool fUsesLocalCoords; bool fColorIgnored; bool fCoverageIgnored; bool fLinesOnly; bool fCanTweakAlphaForCoverage; }; struct Geometry { GrColor fColor; SkMatrix fViewMatrix; SkPath fPath; SkScalar fStrokeWidth; SkStrokeRec::Style fStyle; SkPaint::Join fJoin; SkScalar fMiterLimit; }; BatchTracker fBatch; SkSTArray<1, Geometry, true> fGeoData; typedef GrVertexBatch INHERITED; }; bool GrAALinearizingConvexPathRenderer::onDrawPath(const DrawPathArgs& args) { GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(), "GrAALinearizingConvexPathRenderer::onDrawPath"); SkASSERT(!args.fRenderTargetContext->isUnifiedMultisampled()); SkASSERT(!args.fShape->isEmpty()); SkASSERT(!args.fShape->style().pathEffect()); SkPath path; args.fShape->asPath(&path); bool fill = args.fShape->style().isSimpleFill(); const SkStrokeRec& stroke = args.fShape->style().strokeRec(); SkScalar strokeWidth = fill ? -1.0f : stroke.getWidth(); SkPaint::Join join = fill ? SkPaint::Join::kMiter_Join : stroke.getJoin(); SkScalar miterLimit = stroke.getMiter(); SkAutoTUnref batch(new AAFlatteningConvexPathBatch(args.fPaint->getColor(), *args.fViewMatrix, path, strokeWidth, stroke.getStyle(), join, miterLimit)); GrPipelineBuilder pipelineBuilder(*args.fPaint); pipelineBuilder.setUserStencil(args.fUserStencilSettings); args.fRenderTargetContext->drawBatch(pipelineBuilder, *args.fClip, batch); return true; } /////////////////////////////////////////////////////////////////////////////////////////////////// #ifdef GR_TEST_UTILS DRAW_BATCH_TEST_DEFINE(AAFlatteningConvexPathBatch) { GrColor color = GrRandomColor(random); SkMatrix viewMatrix = GrTest::TestMatrixInvertible(random); SkPath path = GrTest::TestPathConvex(random); SkStrokeRec::Style styles[3] = { SkStrokeRec::kFill_Style, SkStrokeRec::kStroke_Style, SkStrokeRec::kStrokeAndFill_Style }; SkStrokeRec::Style style = styles[random->nextU() % 3]; SkScalar strokeWidth = -1.f; SkPaint::Join join = SkPaint::kMiter_Join; SkScalar miterLimit = 0.5f; if (SkStrokeRec::kFill_Style != style) { strokeWidth = random->nextRangeF(1.0f, 10.0f); if (random->nextBool()) { join = SkPaint::kMiter_Join; } else { join = SkPaint::kBevel_Join; } miterLimit = random->nextRangeF(0.5f, 2.0f); } return new AAFlatteningConvexPathBatch(color, viewMatrix, path, strokeWidth, style, join, miterLimit); } #endif