/* * Copyright 2010 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkGrPixelRef.h" #include "GrContext.h" #include "GrTexture.h" #include "GrTexturePriv.h" #include "SkBitmapCache.h" #include "SkGr.h" #include "SkRect.h" // since we call lockPixels recursively on fBitmap, we need a distinct mutex, // to avoid deadlock with the default one provided by SkPixelRef. SK_DECLARE_STATIC_MUTEX(gROLockPixelsPixelRefMutex); SkROLockPixelsPixelRef::SkROLockPixelsPixelRef(const SkImageInfo& info) : INHERITED(info, &gROLockPixelsPixelRefMutex) {} SkROLockPixelsPixelRef::~SkROLockPixelsPixelRef() {} bool SkROLockPixelsPixelRef::onNewLockPixels(LockRec* rec) { fBitmap.reset(); // SkDebugf("---------- calling readpixels in support of lockpixels\n"); if (!this->onReadPixels(&fBitmap, NULL)) { SkDebugf("SkROLockPixelsPixelRef::onLockPixels failed!\n"); return false; } fBitmap.lockPixels(); if (NULL == fBitmap.getPixels()) { return false; } rec->fPixels = fBitmap.getPixels(); rec->fColorTable = NULL; rec->fRowBytes = fBitmap.rowBytes(); return true; } void SkROLockPixelsPixelRef::onUnlockPixels() { fBitmap.unlockPixels(); } bool SkROLockPixelsPixelRef::onLockPixelsAreWritable() const { return false; } /////////////////////////////////////////////////////////////////////////////// static SkGrPixelRef* copy_to_new_texture_pixelref(GrTexture* texture, SkColorType dstCT, SkColorProfileType dstPT, const SkIRect* subset) { if (NULL == texture || kUnknown_SkColorType == dstCT) { return NULL; } GrContext* context = texture->getContext(); if (NULL == context) { return NULL; } GrSurfaceDesc desc; SkIRect srcRect; if (!subset) { desc.fWidth = texture->width(); desc.fHeight = texture->height(); srcRect = SkIRect::MakeWH(texture->width(), texture->height()); } else { SkASSERT(SkIRect::MakeWH(texture->width(), texture->height()).contains(*subset)); // Create a new texture that is the size of subset. desc.fWidth = subset->width(); desc.fHeight = subset->height(); srcRect = *subset; } desc.fFlags = kRenderTarget_GrSurfaceFlag; desc.fConfig = SkImageInfo2GrPixelConfig(dstCT, kPremul_SkAlphaType, dstPT); GrTexture* dst = context->textureProvider()->createTexture(desc, false, NULL, 0); if (NULL == dst) { return NULL; } // Blink is relying on the above copy being sent to GL immediately in the case when the source // is a WebGL canvas backing store. We could have a TODO to remove this flush flag, but we have // a larger TODO to remove SkGrPixelRef entirely. context->copySurface(dst->asRenderTarget(), texture, srcRect, SkIPoint::Make(0,0), GrContext::kFlushWrites_PixelOp); SkImageInfo info = SkImageInfo::Make(desc.fWidth, desc.fHeight, dstCT, kPremul_SkAlphaType, dstPT); SkGrPixelRef* pixelRef = SkNEW_ARGS(SkGrPixelRef, (info, dst)); SkSafeUnref(dst); return pixelRef; } /////////////////////////////////////////////////////////////////////////////// SkGrPixelRef::SkGrPixelRef(const SkImageInfo& info, GrSurface* surface) : INHERITED(info) { // For surfaces that are both textures and render targets, the texture owns the // render target but not vice versa. So we ref the texture to keep both alive for // the lifetime of this pixel ref. fSurface = SkSafeRef(surface->asTexture()); if (NULL == fSurface) { fSurface = SkSafeRef(surface); } if (fSurface) { SkASSERT(info.width() <= fSurface->width()); SkASSERT(info.height() <= fSurface->height()); } } SkGrPixelRef::~SkGrPixelRef() { SkSafeUnref(fSurface); } GrTexture* SkGrPixelRef::getTexture() { if (fSurface) { return fSurface->asTexture(); } return NULL; } void SkGrPixelRef::onNotifyPixelsChanged() { GrTexture* texture = this->getTexture(); if (texture) { texture->texturePriv().dirtyMipMaps(true); } } SkPixelRef* SkGrPixelRef::deepCopy(SkColorType dstCT, SkColorProfileType dstPT, const SkIRect* subset) { if (NULL == fSurface) { return NULL; } // Note that when copying a render-target-backed pixel ref, we // return a texture-backed pixel ref instead. This is because // render-target pixel refs are usually created in conjunction with // a GrTexture owned elsewhere (e.g., SkGpuDevice), and cannot live // independently of that texture. Texture-backed pixel refs, on the other // hand, own their GrTextures, and are thus self-contained. return copy_to_new_texture_pixelref(fSurface->asTexture(), dstCT, dstPT, subset); } static bool tryAllocBitmapPixels(SkBitmap* bitmap) { SkBitmap::Allocator* allocator = SkBitmapCache::GetAllocator(); if (NULL != allocator) { return allocator->allocPixelRef(bitmap, 0); } else { // DiscardableMemory is not available, fallback to default allocator return bitmap->tryAllocPixels(); } } bool SkGrPixelRef::onReadPixels(SkBitmap* dst, const SkIRect* subset) { if (NULL == fSurface || fSurface->wasDestroyed()) { return false; } SkIRect bounds; if (subset) { bounds = *subset; } else { bounds = SkIRect::MakeWH(this->info().width(), this->info().height()); } //Check the cache if(!SkBitmapCache::Find(this->getGenerationID(), bounds, dst)) { //Cache miss SkBitmap cachedBitmap; cachedBitmap.setInfo(this->info().makeWH(bounds.width(), bounds.height())); // If we can't alloc the pixels, then fail if (!tryAllocBitmapPixels(&cachedBitmap)) { return false; } // Try to read the pixels from the surface void* buffer = cachedBitmap.getPixels(); bool readPixelsOk = fSurface->readPixels(bounds.fLeft, bounds.fTop, bounds.width(), bounds.height(), kSkia8888_GrPixelConfig, buffer, cachedBitmap.rowBytes()); if (!readPixelsOk) { return false; } // If we are here, pixels were read correctly from the surface. cachedBitmap.setImmutable(); //Add to the cache SkBitmapCache::Add(this, bounds, cachedBitmap); dst->swap(cachedBitmap); } return true; }