/* * Copyright 2010 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkGr.h" #include "SkColorFilter.h" #include "SkConfig8888.h" #include "SkData.h" #include "SkMessageBus.h" #include "SkPixelRef.h" #include "SkTextureCompressor.h" #include "GrResourceCache.h" #include "GrGpu.h" #include "effects/GrDitherEffect.h" #include "GrDrawTargetCaps.h" #include "effects/GrYUVtoRGBEffect.h" #ifndef SK_IGNORE_ETC1_SUPPORT # include "ktx.h" # include "etc1.h" #endif /* Fill out buffer with the compressed format Ganesh expects from a colortable based bitmap. [palette (colortable) + indices]. At the moment Ganesh only supports 8bit version. If Ganesh allowed we others we could detect that the colortable.count is <= 16, and then repack the indices as nibbles to save RAM, but it would take more time (i.e. a lot slower than memcpy), so skipping that for now. Ganesh wants a full 256 palette entry, even though Skia's ctable is only as big as the colortable.count says it is. */ static void build_index8_data(void* buffer, const SkBitmap& bitmap) { SkASSERT(kIndex_8_SkColorType == bitmap.colorType()); SkAutoLockPixels alp(bitmap); if (!bitmap.readyToDraw()) { SkDEBUGFAIL("bitmap not ready to draw!"); return; } SkColorTable* ctable = bitmap.getColorTable(); char* dst = (char*)buffer; const int count = ctable->count(); SkDstPixelInfo dstPI; dstPI.fColorType = kRGBA_8888_SkColorType; dstPI.fAlphaType = kPremul_SkAlphaType; dstPI.fPixels = buffer; dstPI.fRowBytes = count * sizeof(SkPMColor); SkSrcPixelInfo srcPI; srcPI.fColorType = kN32_SkColorType; srcPI.fAlphaType = kPremul_SkAlphaType; srcPI.fPixels = ctable->lockColors(); srcPI.fRowBytes = count * sizeof(SkPMColor); srcPI.convertPixelsTo(&dstPI, count, 1); ctable->unlockColors(); // always skip a full 256 number of entries, even if we memcpy'd fewer dst += 256 * sizeof(GrColor); if ((unsigned)bitmap.width() == bitmap.rowBytes()) { memcpy(dst, bitmap.getPixels(), bitmap.getSize()); } else { // need to trim off the extra bytes per row size_t width = bitmap.width(); size_t rowBytes = bitmap.rowBytes(); const char* src = (const char*)bitmap.getPixels(); for (int y = 0; y < bitmap.height(); y++) { memcpy(dst, src, width); src += rowBytes; dst += width; } } } //////////////////////////////////////////////////////////////////////////////// static void generate_bitmap_cache_id(const SkBitmap& bitmap, GrCacheID* id) { // Our id includes the offset, width, and height so that bitmaps created by extractSubset() // are unique. uint32_t genID = bitmap.getGenerationID(); SkIPoint origin = bitmap.pixelRefOrigin(); int16_t width = SkToS16(bitmap.width()); int16_t height = SkToS16(bitmap.height()); GrCacheID::Key key; memcpy(key.fData8 + 0, &genID, 4); memcpy(key.fData8 + 4, &origin.fX, 4); memcpy(key.fData8 + 8, &origin.fY, 4); memcpy(key.fData8 + 12, &width, 2); memcpy(key.fData8 + 14, &height, 2); static const size_t kKeyDataSize = 16; memset(key.fData8 + kKeyDataSize, 0, sizeof(key) - kKeyDataSize); GR_STATIC_ASSERT(sizeof(key) >= kKeyDataSize); static const GrCacheID::Domain gBitmapTextureDomain = GrCacheID::GenerateDomain(); id->reset(gBitmapTextureDomain, key); } static void generate_bitmap_texture_desc(const SkBitmap& bitmap, GrSurfaceDesc* desc) { desc->fFlags = kNone_GrSurfaceFlags; desc->fWidth = bitmap.width(); desc->fHeight = bitmap.height(); desc->fConfig = SkImageInfo2GrPixelConfig(bitmap.info()); desc->fSampleCnt = 0; } namespace { // When the SkPixelRef genID changes, invalidate a corresponding GrResource described by key. class GrResourceInvalidator : public SkPixelRef::GenIDChangeListener { public: explicit GrResourceInvalidator(GrResourceKey key) : fKey(key) {} private: GrResourceKey fKey; virtual void onChange() SK_OVERRIDE { const GrResourceInvalidatedMessage message = { fKey }; SkMessageBus::Post(message); } }; } // namespace static void add_genID_listener(GrResourceKey key, SkPixelRef* pixelRef) { SkASSERT(pixelRef); pixelRef->addGenIDChangeListener(SkNEW_ARGS(GrResourceInvalidator, (key))); } static GrTexture* sk_gr_allocate_texture(GrContext* ctx, bool cache, const GrTextureParams* params, const SkBitmap& bm, GrSurfaceDesc desc, const void* pixels, size_t rowBytes) { GrTexture* result; if (cache) { // This texture is likely to be used again so leave it in the cache GrCacheID cacheID; generate_bitmap_cache_id(bm, &cacheID); GrResourceKey key; result = ctx->createTexture(params, desc, cacheID, pixels, rowBytes, &key); if (result) { add_genID_listener(key, bm.pixelRef()); } } else { // This texture is unlikely to be used again (in its present form) so // just use a scratch texture. This will remove the texture from the // cache so no one else can find it. Additionally, once unlocked, the // scratch texture will go to the end of the list for purging so will // likely be available for this volatile bitmap the next time around. result = ctx->refScratchTexture(desc, GrContext::kExact_ScratchTexMatch); if (pixels) { result->writePixels(0, 0, bm.width(), bm.height(), desc.fConfig, pixels, rowBytes); } } return result; } #ifndef SK_IGNORE_ETC1_SUPPORT static GrTexture *load_etc1_texture(GrContext* ctx, bool cache, const GrTextureParams* params, const SkBitmap &bm, GrSurfaceDesc desc) { SkAutoTUnref data(bm.pixelRef()->refEncodedData()); // Is this even encoded data? if (NULL == data) { return NULL; } // Is this a valid PKM encoded data? const uint8_t *bytes = data->bytes(); if (etc1_pkm_is_valid(bytes)) { uint32_t encodedWidth = etc1_pkm_get_width(bytes); uint32_t encodedHeight = etc1_pkm_get_height(bytes); // Does the data match the dimensions of the bitmap? If not, // then we don't know how to scale the image to match it... if (encodedWidth != static_cast(bm.width()) || encodedHeight != static_cast(bm.height())) { return NULL; } // Everything seems good... skip ahead to the data. bytes += ETC_PKM_HEADER_SIZE; desc.fConfig = kETC1_GrPixelConfig; } else if (SkKTXFile::is_ktx(bytes)) { SkKTXFile ktx(data); // Is it actually an ETC1 texture? if (!ktx.isCompressedFormat(SkTextureCompressor::kETC1_Format)) { return NULL; } // Does the data match the dimensions of the bitmap? If not, // then we don't know how to scale the image to match it... if (ktx.width() != bm.width() || ktx.height() != bm.height()) { return NULL; } bytes = ktx.pixelData(); desc.fConfig = kETC1_GrPixelConfig; } else { return NULL; } return sk_gr_allocate_texture(ctx, cache, params, bm, desc, bytes, 0); } #endif // SK_IGNORE_ETC1_SUPPORT static GrTexture *load_yuv_texture(GrContext* ctx, bool cache, const GrTextureParams* params, const SkBitmap& bm, const GrSurfaceDesc& desc) { // Subsets are not supported, the whole pixelRef is loaded when using YUV decoding if ((bm.pixelRef()->info().width() != bm.info().width()) || (bm.pixelRef()->info().height() != bm.info().height())) { return NULL; } SkPixelRef* pixelRef = bm.pixelRef(); SkISize yuvSizes[3]; if ((NULL == pixelRef) || !pixelRef->getYUV8Planes(yuvSizes, NULL, NULL, NULL)) { return NULL; } // Allocate the memory for YUV size_t totalSize(0); size_t sizes[3], rowBytes[3]; for (int i = 0; i < 3; ++i) { rowBytes[i] = yuvSizes[i].fWidth; totalSize += sizes[i] = rowBytes[i] * yuvSizes[i].fHeight; } SkAutoMalloc storage(totalSize); void* planes[3]; planes[0] = storage.get(); planes[1] = (uint8_t*)planes[0] + sizes[0]; planes[2] = (uint8_t*)planes[1] + sizes[1]; SkYUVColorSpace colorSpace; // Get the YUV planes if (!pixelRef->getYUV8Planes(yuvSizes, planes, rowBytes, &colorSpace)) { return NULL; } GrSurfaceDesc yuvDesc; yuvDesc.fConfig = kAlpha_8_GrPixelConfig; SkAutoTUnref yuvTextures[3]; for (int i = 0; i < 3; ++i) { yuvDesc.fWidth = yuvSizes[i].fWidth; yuvDesc.fHeight = yuvSizes[i].fHeight; yuvTextures[i].reset( ctx->refScratchTexture(yuvDesc, GrContext::kApprox_ScratchTexMatch)); if (!yuvTextures[i] || !yuvTextures[i]->writePixels(0, 0, yuvDesc.fWidth, yuvDesc.fHeight, yuvDesc.fConfig, planes[i], rowBytes[i])) { return NULL; } } GrSurfaceDesc rtDesc = desc; rtDesc.fFlags = rtDesc.fFlags | kRenderTarget_GrSurfaceFlag | kNoStencil_GrSurfaceFlag; GrTexture* result = sk_gr_allocate_texture(ctx, cache, params, bm, rtDesc, NULL, 0); GrRenderTarget* renderTarget = result ? result->asRenderTarget() : NULL; if (renderTarget) { SkAutoTUnref yuvToRgbProcessor( GrYUVtoRGBEffect::Create(yuvTextures[0], yuvTextures[1], yuvTextures[2], colorSpace)); GrPaint paint; paint.addColorProcessor(yuvToRgbProcessor); SkRect r = SkRect::MakeWH(SkIntToScalar(yuvSizes[0].fWidth), SkIntToScalar(yuvSizes[0].fHeight)); GrContext::AutoRenderTarget autoRT(ctx, renderTarget); GrContext::AutoMatrix am; am.setIdentity(ctx); GrContext::AutoClip ac(ctx, GrContext::AutoClip::kWideOpen_InitialClip); ctx->drawRect(paint, r); } else { SkSafeSetNull(result); } return result; } static GrTexture* sk_gr_create_bitmap_texture(GrContext* ctx, bool cache, const GrTextureParams* params, const SkBitmap& origBitmap) { SkBitmap tmpBitmap; const SkBitmap* bitmap = &origBitmap; GrSurfaceDesc desc; generate_bitmap_texture_desc(*bitmap, &desc); if (kIndex_8_SkColorType == bitmap->colorType()) { // build_compressed_data doesn't do npot->pot expansion // and paletted textures can't be sub-updated if (cache && ctx->supportsIndex8PixelConfig(params, bitmap->width(), bitmap->height())) { size_t imageSize = GrCompressedFormatDataSize(kIndex_8_GrPixelConfig, bitmap->width(), bitmap->height()); SkAutoMalloc storage(imageSize); build_index8_data(storage.get(), origBitmap); // our compressed data will be trimmed, so pass width() for its // "rowBytes", since they are the same now. return sk_gr_allocate_texture(ctx, cache, params, origBitmap, desc, storage.get(), bitmap->width()); } else { origBitmap.copyTo(&tmpBitmap, kN32_SkColorType); // now bitmap points to our temp, which has been promoted to 32bits bitmap = &tmpBitmap; desc.fConfig = SkImageInfo2GrPixelConfig(bitmap->info()); } } // Is this an ETC1 encoded texture? #ifndef SK_IGNORE_ETC1_SUPPORT else if ( // We do not support scratch ETC1 textures, hence they should all be at least // trying to go to the cache. cache // Make sure that the underlying device supports ETC1 textures before we go ahead // and check the data. && ctx->getGpu()->caps()->isConfigTexturable(kETC1_GrPixelConfig) // If the bitmap had compressed data and was then uncompressed, it'll still return // compressed data on 'refEncodedData' and upload it. Probably not good, since if // the bitmap has available pixels, then they might not be what the decompressed // data is. && !(bitmap->readyToDraw())) { GrTexture *texture = load_etc1_texture(ctx, cache, params, *bitmap, desc); if (texture) { return texture; } } #endif // SK_IGNORE_ETC1_SUPPORT else { GrTexture *texture = load_yuv_texture(ctx, cache, params, *bitmap, desc); if (texture) { return texture; } } SkAutoLockPixels alp(*bitmap); if (!bitmap->readyToDraw()) { return NULL; } return sk_gr_allocate_texture(ctx, cache, params, origBitmap, desc, bitmap->getPixels(), bitmap->rowBytes()); } bool GrIsBitmapInCache(const GrContext* ctx, const SkBitmap& bitmap, const GrTextureParams* params) { GrCacheID cacheID; generate_bitmap_cache_id(bitmap, &cacheID); GrSurfaceDesc desc; generate_bitmap_texture_desc(bitmap, &desc); return ctx->isTextureInCache(desc, cacheID, params); } GrTexture* GrRefCachedBitmapTexture(GrContext* ctx, const SkBitmap& bitmap, const GrTextureParams* params) { GrTexture* result = NULL; bool cache = !bitmap.isVolatile(); if (cache) { // If the bitmap isn't changing try to find a cached copy first. GrCacheID cacheID; generate_bitmap_cache_id(bitmap, &cacheID); GrSurfaceDesc desc; generate_bitmap_texture_desc(bitmap, &desc); result = ctx->findAndRefTexture(desc, cacheID, params); } if (NULL == result) { result = sk_gr_create_bitmap_texture(ctx, cache, params, bitmap); } if (NULL == result) { SkDebugf("---- failed to create texture for cache [%d %d]\n", bitmap.width(), bitmap.height()); } return result; } /////////////////////////////////////////////////////////////////////////////// // alphatype is ignore for now, but if GrPixelConfig is expanded to encompass // alpha info, that will be considered. GrPixelConfig SkImageInfo2GrPixelConfig(SkColorType ct, SkAlphaType) { switch (ct) { case kUnknown_SkColorType: return kUnknown_GrPixelConfig; case kAlpha_8_SkColorType: return kAlpha_8_GrPixelConfig; case kRGB_565_SkColorType: return kRGB_565_GrPixelConfig; case kARGB_4444_SkColorType: return kRGBA_4444_GrPixelConfig; case kRGBA_8888_SkColorType: return kRGBA_8888_GrPixelConfig; case kBGRA_8888_SkColorType: return kBGRA_8888_GrPixelConfig; case kIndex_8_SkColorType: return kIndex_8_GrPixelConfig; } SkASSERT(0); // shouldn't get here return kUnknown_GrPixelConfig; } bool GrPixelConfig2ColorType(GrPixelConfig config, SkColorType* ctOut) { SkColorType ct; switch (config) { case kAlpha_8_GrPixelConfig: ct = kAlpha_8_SkColorType; break; case kIndex_8_GrPixelConfig: ct = kIndex_8_SkColorType; break; case kRGB_565_GrPixelConfig: ct = kRGB_565_SkColorType; break; case kRGBA_4444_GrPixelConfig: ct = kARGB_4444_SkColorType; break; case kRGBA_8888_GrPixelConfig: ct = kRGBA_8888_SkColorType; break; case kBGRA_8888_GrPixelConfig: ct = kBGRA_8888_SkColorType; break; default: return false; } if (ctOut) { *ctOut = ct; } return true; } /////////////////////////////////////////////////////////////////////////////// void SkPaint2GrPaintNoShader(GrContext* context, const SkPaint& skPaint, GrColor paintColor, bool constantColor, GrPaint* grPaint) { grPaint->setDither(skPaint.isDither()); grPaint->setAntiAlias(skPaint.isAntiAlias()); SkXfermode::Coeff sm; SkXfermode::Coeff dm; SkXfermode* mode = skPaint.getXfermode(); GrFragmentProcessor* xferProcessor = NULL; if (SkXfermode::asFragmentProcessorOrCoeff(mode, &xferProcessor, &sm, &dm)) { if (xferProcessor) { grPaint->addColorProcessor(xferProcessor)->unref(); sm = SkXfermode::kOne_Coeff; dm = SkXfermode::kZero_Coeff; } } else { //SkDEBUGCODE(SkDebugf("Unsupported xfer mode.\n");) // Fall back to src-over sm = SkXfermode::kOne_Coeff; dm = SkXfermode::kISA_Coeff; } grPaint->setBlendFunc(sk_blend_to_grblend(sm), sk_blend_to_grblend(dm)); //set the color of the paint to the one of the parameter grPaint->setColor(paintColor); SkColorFilter* colorFilter = skPaint.getColorFilter(); if (colorFilter) { // if the source color is a constant then apply the filter here once rather than per pixel // in a shader. if (constantColor) { SkColor filtered = colorFilter->filterColor(skPaint.getColor()); grPaint->setColor(SkColor2GrColor(filtered)); } else { SkAutoTUnref fp(colorFilter->asFragmentProcessor(context)); if (fp.get()) { grPaint->addColorProcessor(fp); } } } #ifndef SK_IGNORE_GPU_DITHER // If the dither flag is set, then we need to see if the underlying context // supports it. If not, then install a dither effect. if (skPaint.isDither() && grPaint->numColorStages() > 0) { // What are we rendering into? const GrRenderTarget *target = context->getRenderTarget(); SkASSERT(target); // Suspect the dithering flag has no effect on these configs, otherwise // fall back on setting the appropriate state. if (target->config() == kRGBA_8888_GrPixelConfig || target->config() == kBGRA_8888_GrPixelConfig) { // The dither flag is set and the target is likely // not going to be dithered by the GPU. SkAutoTUnref fp(GrDitherEffect::Create()); if (fp.get()) { grPaint->addColorProcessor(fp); grPaint->setDither(false); } } } #endif } /** * Unlike GrContext::AutoMatrix, this doesn't require setting a new matrix. GrContext::AutoMatrix * likes to set the new matrix in its constructor because it is usually necessary to simulataneously * update a GrPaint. This AutoMatrix is used while initially setting up GrPaint, however. */ class AutoMatrix { public: AutoMatrix(GrContext* context) { fMatrix = context->getMatrix(); fContext = context; } ~AutoMatrix() { SkASSERT(fContext); fContext->setMatrix(fMatrix); } private: GrContext* fContext; SkMatrix fMatrix; }; void SkPaint2GrPaintShader(GrContext* context, const SkPaint& skPaint, bool constantColor, GrPaint* grPaint) { SkShader* shader = skPaint.getShader(); if (NULL == shader) { SkPaint2GrPaintNoShader(context, skPaint, SkColor2GrColor(skPaint.getColor()), constantColor, grPaint); return; } GrColor paintColor = SkColor2GrColor(skPaint.getColor()); // Start a new block here in order to preserve our context state after calling // asFragmentProcessor(). Since these calls get passed back to the client, we don't really // want them messing around with the context. { // SkShader::asFragmentProcessor() may do offscreen rendering. Save off the current RT, // clip, and matrix. We don't reset the matrix on the context because // SkShader::asFragmentProcessor may use GrContext::getMatrix() to know the transformation // from local coords to device space. GrContext::AutoRenderTarget art(context, NULL); GrContext::AutoClip ac(context, GrContext::AutoClip::kWideOpen_InitialClip); AutoMatrix am(context); // Allow the shader to modify paintColor and also create an effect to be installed as // the first color effect on the GrPaint. GrFragmentProcessor* fp = NULL; if (shader->asFragmentProcessor(context, skPaint, NULL, &paintColor, &fp) && fp) { grPaint->addColorProcessor(fp)->unref(); constantColor = false; } } // The grcolor is automatically set when calling asFragmentProcessor. // If the shader can be seen as an effect it returns true and adds its effect to the grpaint. SkPaint2GrPaintNoShader(context, skPaint, paintColor, constantColor, grPaint); }