/* * Copyright 2010 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkGr.h" #include "GrBitmapTextureMaker.h" #include "GrCaps.h" #include "GrColorSpaceXform.h" #include "GrContext.h" #include "GrContextPriv.h" #include "GrGpuResourcePriv.h" #include "GrPaint.h" #include "GrProxyProvider.h" #include "GrTextureProxy.h" #include "GrTypes.h" #include "GrXferProcessor.h" #include "SkAutoMalloc.h" #include "SkBlendModePriv.h" #include "SkCanvas.h" #include "SkColorFilter.h" #include "SkConvertPixels.h" #include "SkData.h" #include "SkImage_Base.h" #include "SkImageInfoPriv.h" #include "SkImagePriv.h" #include "SkMaskFilterBase.h" #include "SkMessageBus.h" #include "SkMipMap.h" #include "SkPM4fPriv.h" #include "SkPaintPriv.h" #include "SkPixelRef.h" #include "SkResourceCache.h" #include "SkShaderBase.h" #include "SkTemplates.h" #include "SkTraceEvent.h" #include "effects/GrBicubicEffect.h" #include "effects/GrConstColorProcessor.h" #include "effects/GrDitherEffect.h" #include "effects/GrPorterDuffXferProcessor.h" #include "effects/GrXfermodeFragmentProcessor.h" GrSurfaceDesc GrImageInfoToSurfaceDesc(const SkImageInfo& info, const GrCaps& caps) { GrSurfaceDesc desc; desc.fFlags = kNone_GrSurfaceFlags; desc.fWidth = info.width(); desc.fHeight = info.height(); desc.fConfig = SkImageInfo2GrPixelConfig(info, caps); desc.fSampleCnt = 1; return desc; } void GrMakeKeyFromImageID(GrUniqueKey* key, uint32_t imageID, const SkIRect& imageBounds) { SkASSERT(key); SkASSERT(imageID); SkASSERT(!imageBounds.isEmpty()); static const GrUniqueKey::Domain kImageIDDomain = GrUniqueKey::GenerateDomain(); GrUniqueKey::Builder builder(key, kImageIDDomain, 5); builder[0] = imageID; builder[1] = imageBounds.fLeft; builder[2] = imageBounds.fTop; builder[3] = imageBounds.fRight; builder[4] = imageBounds.fBottom; } ////////////////////////////////////////////////////////////////////////////// sk_sp GrUploadBitmapToTextureProxy(GrProxyProvider* proxyProvider, const SkBitmap& bitmap, SkColorSpace* dstColorSpace) { if (!bitmap.peekPixels(nullptr)) { return nullptr; } SkDestinationSurfaceColorMode colorMode = dstColorSpace ? SkDestinationSurfaceColorMode::kGammaAndColorSpaceAware : SkDestinationSurfaceColorMode::kLegacy; if (!SkImageInfoIsValid(bitmap.info(), colorMode)) { return nullptr; } // In non-ddl we will always instantiate right away. Thus we never want to copy the SkBitmap // even if it's mutable. In ddl, if the bitmap is mutable then we must make a copy since the // upload of the data to the gpu can happen at anytime and the bitmap may change by then. SkCopyPixelsMode cpyMode = proxyProvider->recordingDDL() ? kIfMutable_SkCopyPixelsMode : kNever_SkCopyPixelsMode; sk_sp image = SkMakeImageFromRasterBitmap(bitmap, cpyMode); return proxyProvider->createTextureProxy(std::move(image), kNone_GrSurfaceFlags, 1, SkBudgeted::kYes, SkBackingFit::kExact); } //////////////////////////////////////////////////////////////////////////////// void GrInstallBitmapUniqueKeyInvalidator(const GrUniqueKey& key, SkPixelRef* pixelRef) { class Invalidator : public SkPixelRef::GenIDChangeListener { public: explicit Invalidator(const GrUniqueKey& key) : fMsg(key) {} private: GrUniqueKeyInvalidatedMessage fMsg; void onChange() override { SkMessageBus::Post(fMsg); } }; pixelRef->addGenIDChangeListener(new Invalidator(key)); } sk_sp GrCopyBaseMipMapToTextureProxy(GrContext* ctx, GrTextureProxy* baseProxy) { SkASSERT(baseProxy); if (!ctx->caps()->isConfigCopyable(baseProxy->config())) { return nullptr; } GrProxyProvider* proxyProvider = ctx->contextPriv().proxyProvider(); GrSurfaceDesc desc; desc.fFlags = kNone_GrSurfaceFlags; desc.fWidth = baseProxy->width(); desc.fHeight = baseProxy->height(); desc.fConfig = baseProxy->config(); desc.fSampleCnt = 1; sk_sp proxy = proxyProvider->createMipMapProxy(desc, baseProxy->origin(), SkBudgeted::kYes); if (!proxy) { return nullptr; } // Copy the base layer to our proxy sk_sp colorSpace; if (GrPixelConfigIsSRGB(proxy->config())) { colorSpace = SkColorSpace::MakeSRGB(); } sk_sp sContext = ctx->contextPriv().makeWrappedSurfaceContext(proxy, std::move(colorSpace)); SkASSERT(sContext); SkAssertResult(sContext->copy(baseProxy)); return proxy; } sk_sp GrRefCachedBitmapTextureProxy(GrContext* ctx, const SkBitmap& bitmap, const GrSamplerState& params, SkScalar scaleAdjust[2]) { // Caller doesn't care about the texture's color space (they can always get it from the bitmap) return GrBitmapTextureMaker(ctx, bitmap).refTextureProxyForParams(params, nullptr, nullptr, scaleAdjust); } sk_sp GrMakeCachedBitmapProxy(GrProxyProvider* proxyProvider, const SkBitmap& bitmap, SkBackingFit fit) { if (!bitmap.peekPixels(nullptr)) { return nullptr; } // In non-ddl we will always instantiate right away. Thus we never want to copy the SkBitmap // even if its mutable. In ddl, if the bitmap is mutable then we must make a copy since the // upload of the data to the gpu can happen at anytime and the bitmap may change by then. SkCopyPixelsMode cpyMode = proxyProvider->recordingDDL() ? kIfMutable_SkCopyPixelsMode : kNever_SkCopyPixelsMode; sk_sp image = SkMakeImageFromRasterBitmap(bitmap, cpyMode); if (!image) { return nullptr; } return GrMakeCachedImageProxy(proxyProvider, std::move(image), fit); } static void create_unique_key_for_image(const SkImage* image, GrUniqueKey* result) { if (!image) { result->reset(); // will be invalid return; } if (const SkBitmap* bm = as_IB(image)->onPeekBitmap()) { if (!bm->isVolatile()) { SkIPoint origin = bm->pixelRefOrigin(); SkIRect subset = SkIRect::MakeXYWH(origin.fX, origin.fY, bm->width(), bm->height()); GrMakeKeyFromImageID(result, bm->getGenerationID(), subset); } return; } GrMakeKeyFromImageID(result, image->uniqueID(), image->bounds()); } sk_sp GrMakeCachedImageProxy(GrProxyProvider* proxyProvider, sk_sp srcImage, SkBackingFit fit) { sk_sp proxy; GrUniqueKey originalKey; create_unique_key_for_image(srcImage.get(), &originalKey); if (originalKey.isValid()) { proxy = proxyProvider->findOrCreateProxyByUniqueKey(originalKey, kTopLeft_GrSurfaceOrigin); } if (!proxy) { proxy = proxyProvider->createTextureProxy(srcImage, kNone_GrSurfaceFlags, 1, SkBudgeted::kYes, fit); if (proxy && originalKey.isValid()) { proxyProvider->assignUniqueKeyToProxy(originalKey, proxy.get()); const SkBitmap* bm = as_IB(srcImage.get())->onPeekBitmap(); // When recording DDLs we do not want to install change listeners because doing // so isn't threadsafe. if (bm && !proxyProvider->recordingDDL()) { GrInstallBitmapUniqueKeyInvalidator(originalKey, bm->pixelRef()); } } } return proxy; } /////////////////////////////////////////////////////////////////////////////// GrColor4f SkColorToPremulGrColor4f(SkColor c, const GrColorSpaceInfo& colorSpaceInfo) { // We want to premultiply after linearizing, so this is easy: return SkColorToUnpremulGrColor4f(c, colorSpaceInfo).premul(); } GrColor4f SkColorToPremulGrColor4fLegacy(SkColor c) { return GrColor4f::FromGrColor(SkColorToUnpremulGrColor(c)).premul(); } GrColor4f SkColorToUnpremulGrColor4f(SkColor c, const GrColorSpaceInfo& colorSpaceInfo) { GrColor4f color; if (colorSpaceInfo.colorSpace()) { // SkColor4f::FromColor does sRGB -> Linear color = GrColor4f::FromSkColor4f(SkColor4f::FromColor(c)); } else { // GrColor4f::FromGrColor just multiplies by 1/255 color = GrColor4f::FromGrColor(SkColorToUnpremulGrColor(c)); } if (auto* xform = colorSpaceInfo.colorSpaceXformFromSRGB()) { color = xform->clampedXform(color); } return color; } /////////////////////////////////////////////////////////////////////////////// GrPixelConfig SkImageInfo2GrPixelConfig(const SkColorType type, SkColorSpace* cs, const GrCaps& caps) { switch (type) { case kUnknown_SkColorType: return kUnknown_GrPixelConfig; case kAlpha_8_SkColorType: return kAlpha_8_GrPixelConfig; case kRGB_565_SkColorType: return kRGB_565_GrPixelConfig; case kARGB_4444_SkColorType: return kRGBA_4444_GrPixelConfig; case kRGBA_8888_SkColorType: return (caps.srgbSupport() && cs && cs->gammaCloseToSRGB()) ? kSRGBA_8888_GrPixelConfig : kRGBA_8888_GrPixelConfig; // TODO: We're checking for srgbSupport, but we can then end up picking sBGRA as our pixel // config (which may not be supported). We need a better test here. case kRGB_888x_SkColorType: return kRGB_888_GrPixelConfig; case kBGRA_8888_SkColorType: return (caps.srgbSupport() && cs && cs->gammaCloseToSRGB()) ? kSBGRA_8888_GrPixelConfig : kBGRA_8888_GrPixelConfig; case kRGBA_1010102_SkColorType: return kRGBA_1010102_GrPixelConfig; case kRGB_101010x_SkColorType: return kUnknown_GrPixelConfig; case kGray_8_SkColorType: return kGray_8_GrPixelConfig; case kRGBA_F16_SkColorType: return kRGBA_half_GrPixelConfig; } SkASSERT(0); // shouldn't get here return kUnknown_GrPixelConfig; } GrPixelConfig SkImageInfo2GrPixelConfig(const SkImageInfo& info, const GrCaps& caps) { return SkImageInfo2GrPixelConfig(info.colorType(), info.colorSpace(), caps); } bool GrPixelConfigToColorType(GrPixelConfig config, SkColorType* ctOut) { SkColorType ct = GrColorTypeToSkColorType(GrPixelConfigToColorType(config)); if (kUnknown_SkColorType != ct) { if (ctOut) { *ctOut = ct; } return true; } return false; } GrPixelConfig GrRenderableConfigForColorSpace(const SkColorSpace* colorSpace) { if (!colorSpace) { return kRGBA_8888_GrPixelConfig; } else if (colorSpace->gammaIsLinear()) { return kRGBA_half_GrPixelConfig; } else if (colorSpace->gammaCloseToSRGB()) { return kSRGBA_8888_GrPixelConfig; } else { SkDEBUGFAIL("No renderable config exists for color space with strange gamma"); return kUnknown_GrPixelConfig; } } //////////////////////////////////////////////////////////////////////////////////////////////// static inline bool blend_requires_shader(const SkBlendMode mode) { return SkBlendMode::kDst != mode; } static inline bool skpaint_to_grpaint_impl(GrContext* context, const GrColorSpaceInfo& colorSpaceInfo, const SkPaint& skPaint, const SkMatrix& viewM, std::unique_ptr* shaderProcessor, SkBlendMode* primColorMode, GrPaint* grPaint) { grPaint->setAllowSRGBInputs(colorSpaceInfo.isGammaCorrect()); // Convert SkPaint color to 4f format, including optional linearizing and gamut conversion. GrColor4f origColor = SkColorToUnpremulGrColor4f(skPaint.getColor(), colorSpaceInfo); const GrFPArgs fpArgs(context, &viewM, skPaint.getFilterQuality(), &colorSpaceInfo); // Setup the initial color considering the shader, the SkPaint color, and the presence or not // of per-vertex colors. std::unique_ptr shaderFP; if (!primColorMode || blend_requires_shader(*primColorMode)) { if (shaderProcessor) { shaderFP = std::move(*shaderProcessor); } else if (const auto* shader = as_SB(skPaint.getShader())) { shaderFP = shader->asFragmentProcessor(fpArgs); if (!shaderFP) { return false; } } } // Set this in below cases if the output of the shader/paint-color/paint-alpha/primXfermode is // a known constant value. In that case we can simply apply a color filter during this // conversion without converting the color filter to a GrFragmentProcessor. bool applyColorFilterToPaintColor = false; if (shaderFP) { if (primColorMode) { // There is a blend between the primitive color and the shader color. The shader sees // the opaque paint color. The shader's output is blended using the provided mode by // the primitive color. The blended color is then modulated by the paint's alpha. // The geometry processor will insert the primitive color to start the color chain, so // the GrPaint color will be ignored. GrColor4f shaderInput = origColor.opaque(); shaderFP = GrFragmentProcessor::OverrideInput(std::move(shaderFP), shaderInput); shaderFP = GrXfermodeFragmentProcessor::MakeFromSrcProcessor(std::move(shaderFP), *primColorMode); // The above may return null if compose results in a pass through of the prim color. if (shaderFP) { grPaint->addColorFragmentProcessor(std::move(shaderFP)); } // We can ignore origColor here - alpha is unchanged by gamma GrColor paintAlpha = SkColorAlphaToGrColor(skPaint.getColor()); if (GrColor_WHITE != paintAlpha) { // No gamut conversion - paintAlpha is a (linear) alpha value, splatted to all // color channels. It's value should be treated as the same in ANY color space. grPaint->addColorFragmentProcessor(GrConstColorProcessor::Make( GrColor4f::FromGrColor(paintAlpha), GrConstColorProcessor::InputMode::kModulateRGBA)); } } else { // The shader's FP sees the paint unpremul color grPaint->setColor4f(origColor); grPaint->addColorFragmentProcessor(std::move(shaderFP)); } } else { if (primColorMode) { // There is a blend between the primitive color and the paint color. The blend considers // the opaque paint color. The paint's alpha is applied to the post-blended color. auto processor = GrConstColorProcessor::Make(origColor.opaque(), GrConstColorProcessor::InputMode::kIgnore); processor = GrXfermodeFragmentProcessor::MakeFromSrcProcessor(std::move(processor), *primColorMode); if (processor) { grPaint->addColorFragmentProcessor(std::move(processor)); } grPaint->setColor4f(origColor.opaque()); // We can ignore origColor here - alpha is unchanged by gamma GrColor paintAlpha = SkColorAlphaToGrColor(skPaint.getColor()); if (GrColor_WHITE != paintAlpha) { // No gamut conversion - paintAlpha is a (linear) alpha value, splatted to all // color channels. It's value should be treated as the same in ANY color space. grPaint->addColorFragmentProcessor(GrConstColorProcessor::Make( GrColor4f::FromGrColor(paintAlpha), GrConstColorProcessor::InputMode::kModulateRGBA)); } } else { // No shader, no primitive color. grPaint->setColor4f(origColor.premul()); applyColorFilterToPaintColor = true; } } SkColorFilter* colorFilter = skPaint.getColorFilter(); if (colorFilter) { if (applyColorFilterToPaintColor) { // If we're in legacy mode, we *must* avoid using the 4f version of the color filter, // because that will combine with the linearized version of the stored color. if (colorSpaceInfo.isGammaCorrect()) { grPaint->setColor4f(GrColor4f::FromSkColor4f( colorFilter->filterColor4f(origColor.toSkColor4f())).premul()); } else { grPaint->setColor4f(SkColorToPremulGrColor4fLegacy( colorFilter->filterColor(skPaint.getColor()))); } } else { auto cfFP = colorFilter->asFragmentProcessor(context, colorSpaceInfo); if (cfFP) { grPaint->addColorFragmentProcessor(std::move(cfFP)); } else { return false; } } } SkMaskFilterBase* maskFilter = as_MFB(skPaint.getMaskFilter()); if (maskFilter) { if (auto mfFP = maskFilter->asFragmentProcessor(fpArgs)) { grPaint->addCoverageFragmentProcessor(std::move(mfFP)); } } // When the xfermode is null on the SkPaint (meaning kSrcOver) we need the XPFactory field on // the GrPaint to also be null (also kSrcOver). SkASSERT(!grPaint->getXPFactory()); if (!skPaint.isSrcOver()) { grPaint->setXPFactory(SkBlendMode_AsXPFactory(skPaint.getBlendMode())); } #ifndef SK_IGNORE_GPU_DITHER // Conservative default, in case GrPixelConfigToColorType() fails. SkColorType ct = SkColorType::kRGB_565_SkColorType; GrPixelConfigToColorType(colorSpaceInfo.config(), &ct); if (SkPaintPriv::ShouldDither(skPaint, ct) && grPaint->numColorFragmentProcessors() > 0 && !colorSpaceInfo.isGammaCorrect()) { auto ditherFP = GrDitherEffect::Make(colorSpaceInfo.config()); if (ditherFP) { grPaint->addColorFragmentProcessor(std::move(ditherFP)); } } #endif return true; } bool SkPaintToGrPaint(GrContext* context, const GrColorSpaceInfo& colorSpaceInfo, const SkPaint& skPaint, const SkMatrix& viewM, GrPaint* grPaint) { return skpaint_to_grpaint_impl(context, colorSpaceInfo, skPaint, viewM, nullptr, nullptr, grPaint); } /** Replaces the SkShader (if any) on skPaint with the passed in GrFragmentProcessor. */ bool SkPaintToGrPaintReplaceShader(GrContext* context, const GrColorSpaceInfo& colorSpaceInfo, const SkPaint& skPaint, std::unique_ptr shaderFP, GrPaint* grPaint) { if (!shaderFP) { return false; } return skpaint_to_grpaint_impl(context, colorSpaceInfo, skPaint, SkMatrix::I(), &shaderFP, nullptr, grPaint); } /** Ignores the SkShader (if any) on skPaint. */ bool SkPaintToGrPaintNoShader(GrContext* context, const GrColorSpaceInfo& colorSpaceInfo, const SkPaint& skPaint, GrPaint* grPaint) { // Use a ptr to a nullptr to to indicate that the SkShader is ignored and not replaced. static std::unique_ptr kNullShaderFP(nullptr); static std::unique_ptr* kIgnoreShader = &kNullShaderFP; return skpaint_to_grpaint_impl(context, colorSpaceInfo, skPaint, SkMatrix::I(), kIgnoreShader, nullptr, grPaint); } /** Blends the SkPaint's shader (or color if no shader) with a per-primitive color which must be setup as a vertex attribute using the specified SkBlendMode. */ bool SkPaintToGrPaintWithXfermode(GrContext* context, const GrColorSpaceInfo& colorSpaceInfo, const SkPaint& skPaint, const SkMatrix& viewM, SkBlendMode primColorMode, GrPaint* grPaint) { return skpaint_to_grpaint_impl(context, colorSpaceInfo, skPaint, viewM, nullptr, &primColorMode, grPaint); } bool SkPaintToGrPaintWithTexture(GrContext* context, const GrColorSpaceInfo& colorSpaceInfo, const SkPaint& paint, const SkMatrix& viewM, std::unique_ptr fp, bool textureIsAlphaOnly, GrPaint* grPaint) { std::unique_ptr shaderFP; if (textureIsAlphaOnly) { if (const auto* shader = as_SB(paint.getShader())) { shaderFP = shader->asFragmentProcessor(GrFPArgs( context, &viewM, nullptr, paint.getFilterQuality(), &colorSpaceInfo)); if (!shaderFP) { return false; } std::unique_ptr fpSeries[] = { std::move(shaderFP), std::move(fp) }; shaderFP = GrFragmentProcessor::RunInSeries(fpSeries, 2); } else { shaderFP = GrFragmentProcessor::MakeInputPremulAndMulByOutput(std::move(fp)); } } else { shaderFP = GrFragmentProcessor::MulChildByInputAlpha(std::move(fp)); } return SkPaintToGrPaintReplaceShader(context, colorSpaceInfo, paint, std::move(shaderFP), grPaint); } //////////////////////////////////////////////////////////////////////////////////////////////// GrSamplerState::Filter GrSkFilterQualityToGrFilterMode(SkFilterQuality paintFilterQuality, const SkMatrix& viewM, const SkMatrix& localM, bool sharpenMipmappedTextures, bool* doBicubic) { *doBicubic = false; GrSamplerState::Filter textureFilterMode; switch (paintFilterQuality) { case kNone_SkFilterQuality: textureFilterMode = GrSamplerState::Filter::kNearest; break; case kLow_SkFilterQuality: textureFilterMode = GrSamplerState::Filter::kBilerp; break; case kMedium_SkFilterQuality: { SkMatrix matrix; matrix.setConcat(viewM, localM); // With sharp mips, we bias lookups by -0.5. That means our final LOD is >= 0 until the // computed LOD is >= 0.5. At what scale factor does a texture get an LOD of 0.5? // // Want: 0 = log2(1/s) - 0.5 // 0.5 = log2(1/s) // 2^0.5 = 1/s // 1/2^0.5 = s // 2^0.5/2 = s SkScalar mipScale = sharpenMipmappedTextures ? SK_ScalarRoot2Over2 : SK_Scalar1; if (matrix.getMinScale() < mipScale) { textureFilterMode = GrSamplerState::Filter::kMipMap; } else { // Don't trigger MIP level generation unnecessarily. textureFilterMode = GrSamplerState::Filter::kBilerp; } break; } case kHigh_SkFilterQuality: { SkMatrix matrix; matrix.setConcat(viewM, localM); *doBicubic = GrBicubicEffect::ShouldUseBicubic(matrix, &textureFilterMode); break; } default: // Should be unreachable. If not, fall back to mipmaps. textureFilterMode = GrSamplerState::Filter::kMipMap; break; } return textureFilterMode; }