/* * Copyright 2010 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkGr.h" #include "GrXferProcessor.h" #include "SkColorFilter.h" #include "SkConfig8888.h" #include "SkData.h" #include "SkErrorInternals.h" #include "SkMessageBus.h" #include "SkPixelRef.h" #include "SkResourceCache.h" #include "SkTextureCompressor.h" #include "SkYUVPlanesCache.h" #include "effects/GrDitherEffect.h" #include "effects/GrPorterDuffXferProcessor.h" #include "effects/GrYUVtoRGBEffect.h" #ifndef SK_IGNORE_ETC1_SUPPORT # include "ktx.h" # include "etc1.h" #endif /* Fill out buffer with the compressed format Ganesh expects from a colortable based bitmap. [palette (colortable) + indices]. At the moment Ganesh only supports 8bit version. If Ganesh allowed we others we could detect that the colortable.count is <= 16, and then repack the indices as nibbles to save RAM, but it would take more time (i.e. a lot slower than memcpy), so skipping that for now. Ganesh wants a full 256 palette entry, even though Skia's ctable is only as big as the colortable.count says it is. */ static void build_index8_data(void* buffer, const SkBitmap& bitmap) { SkASSERT(kIndex_8_SkColorType == bitmap.colorType()); SkAutoLockPixels alp(bitmap); if (!bitmap.readyToDraw()) { SkDEBUGFAIL("bitmap not ready to draw!"); return; } SkColorTable* ctable = bitmap.getColorTable(); char* dst = (char*)buffer; const int count = ctable->count(); SkDstPixelInfo dstPI; dstPI.fColorType = kRGBA_8888_SkColorType; dstPI.fAlphaType = kPremul_SkAlphaType; dstPI.fPixels = buffer; dstPI.fRowBytes = count * sizeof(SkPMColor); SkSrcPixelInfo srcPI; srcPI.fColorType = kN32_SkColorType; srcPI.fAlphaType = kPremul_SkAlphaType; srcPI.fPixels = ctable->readColors(); srcPI.fRowBytes = count * sizeof(SkPMColor); srcPI.convertPixelsTo(&dstPI, count, 1); // always skip a full 256 number of entries, even if we memcpy'd fewer dst += 256 * sizeof(GrColor); if ((unsigned)bitmap.width() == bitmap.rowBytes()) { memcpy(dst, bitmap.getPixels(), bitmap.getSize()); } else { // need to trim off the extra bytes per row size_t width = bitmap.width(); size_t rowBytes = bitmap.rowBytes(); const char* src = (const char*)bitmap.getPixels(); for (int y = 0; y < bitmap.height(); y++) { memcpy(dst, src, width); src += rowBytes; dst += width; } } } //////////////////////////////////////////////////////////////////////////////// enum Stretch { kNo_Stretch, kBilerp_Stretch, kNearest_Stretch }; static Stretch get_stretch_type(const GrContext* ctx, int width, int height, const GrTextureParams* params) { if (params && params->isTiled()) { if (!ctx->npotTextureTileSupport() && (!SkIsPow2(width) || !SkIsPow2(height))) { switch(params->filterMode()) { case GrTextureParams::kNone_FilterMode: return kNearest_Stretch; case GrTextureParams::kBilerp_FilterMode: case GrTextureParams::kMipMap_FilterMode: return kBilerp_Stretch; } } } return kNo_Stretch; } static bool make_stretched_key(const GrUniqueKey& origKey, Stretch stretch, GrUniqueKey* stretchedKey) { if (origKey.isValid() && kNo_Stretch != stretch) { static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain(); GrUniqueKey::Builder builder(stretchedKey, origKey, kDomain, 1); builder[0] = stretch; builder.finish(); return true; } SkASSERT(!stretchedKey->isValid()); return false; } static void make_unstretched_key(const SkBitmap& bitmap, GrUniqueKey* key) { // Our id includes the offset, width, and height so that bitmaps created by extractSubset() // are unique. uint32_t genID = bitmap.getGenerationID(); SkIPoint origin = bitmap.pixelRefOrigin(); uint32_t width = SkToU16(bitmap.width()); uint32_t height = SkToU16(bitmap.height()); static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain(); GrUniqueKey::Builder builder(key, kDomain, 4); builder[0] = genID; builder[1] = origin.fX; builder[2] = origin.fY; builder[3] = width | (height << 16); } static void make_bitmap_keys(const SkBitmap& bitmap, Stretch stretch, GrUniqueKey* key, GrUniqueKey* stretchedKey) { make_unstretched_key(bitmap, key); if (kNo_Stretch != stretch) { make_stretched_key(*key, stretch, stretchedKey); } } static void generate_bitmap_texture_desc(const SkBitmap& bitmap, GrSurfaceDesc* desc) { desc->fFlags = kNone_GrSurfaceFlags; desc->fWidth = bitmap.width(); desc->fHeight = bitmap.height(); desc->fConfig = SkImageInfo2GrPixelConfig(bitmap.info()); desc->fSampleCnt = 0; } namespace { // When the SkPixelRef genID changes, invalidate a corresponding GrResource described by key. class BitmapInvalidator : public SkPixelRef::GenIDChangeListener { public: explicit BitmapInvalidator(const GrUniqueKey& key) : fMsg(key) {} private: GrUniqueKeyInvalidatedMessage fMsg; void onChange() SK_OVERRIDE { SkMessageBus::Post(fMsg); } }; } // namespace static GrTexture* create_texture_for_bmp(GrContext* ctx, const GrUniqueKey& optionalKey, GrSurfaceDesc desc, SkPixelRef* pixelRefForInvalidationNotification, const void* pixels, size_t rowBytes) { GrTexture* result = ctx->createTexture(desc, true, pixels, rowBytes); if (result && optionalKey.isValid()) { BitmapInvalidator* listener = SkNEW_ARGS(BitmapInvalidator, (optionalKey)); pixelRefForInvalidationNotification->addGenIDChangeListener(listener); ctx->addResourceToCache(optionalKey, result); } return result; } // creates a new texture that is the input texture scaled up to the next power of two in // width or height. If optionalKey is valid it will be set on the new texture. stretch // controls whether the scaling is done using nearest or bilerp filtering. GrTexture* stretch_texture_to_next_pot(GrTexture* inputTexture, Stretch stretch, SkPixelRef* pixelRef, const GrUniqueKey& optionalKey) { SkASSERT(kNo_Stretch != stretch); GrContext* context = inputTexture->getContext(); SkASSERT(context); // Either it's a cache miss or the original wasn't cached to begin with. GrSurfaceDesc rtDesc = inputTexture->desc(); rtDesc.fFlags = rtDesc.fFlags | kRenderTarget_GrSurfaceFlag; rtDesc.fWidth = GrNextPow2(rtDesc.fWidth); rtDesc.fHeight = GrNextPow2(rtDesc.fHeight); rtDesc.fConfig = GrMakePixelConfigUncompressed(rtDesc.fConfig); // If the config isn't renderable try converting to either A8 or an 32 bit config. Otherwise, // fail. if (!context->isConfigRenderable(rtDesc.fConfig, false)) { if (GrPixelConfigIsAlphaOnly(rtDesc.fConfig)) { if (context->isConfigRenderable(kAlpha_8_GrPixelConfig, false)) { rtDesc.fConfig = kAlpha_8_GrPixelConfig; } else if (context->isConfigRenderable(kSkia8888_GrPixelConfig, false)) { rtDesc.fConfig = kSkia8888_GrPixelConfig; } else { return NULL; } } else if (kRGB_GrColorComponentFlags == (kRGB_GrColorComponentFlags & GrPixelConfigComponentMask(rtDesc.fConfig))) { if (context->isConfigRenderable(kSkia8888_GrPixelConfig, false)) { rtDesc.fConfig = kSkia8888_GrPixelConfig; } else { return NULL; } } else { return NULL; } } GrTexture* stretched = create_texture_for_bmp(context, optionalKey, rtDesc, pixelRef, NULL, 0); if (!stretched) { return NULL; } GrPaint paint; // If filtering is not desired then we want to ensure all texels in the resampled image are // copies of texels from the original. GrTextureParams params(SkShader::kClamp_TileMode, kBilerp_Stretch == stretch ? GrTextureParams::kBilerp_FilterMode : GrTextureParams::kNone_FilterMode); paint.addColorTextureProcessor(inputTexture, SkMatrix::I(), params); SkRect rect = SkRect::MakeWH(SkIntToScalar(rtDesc.fWidth), SkIntToScalar(rtDesc.fHeight)); SkRect localRect = SkRect::MakeWH(1.f, 1.f); context->drawNonAARectToRect(stretched->asRenderTarget(), GrClip::WideOpen(), paint, SkMatrix::I(), rect, localRect); return stretched; } #ifndef SK_IGNORE_ETC1_SUPPORT static GrTexture *load_etc1_texture(GrContext* ctx, const GrUniqueKey& optionalKey, const SkBitmap &bm, GrSurfaceDesc desc) { SkAutoTUnref data(bm.pixelRef()->refEncodedData()); // Is this even encoded data? if (NULL == data) { return NULL; } // Is this a valid PKM encoded data? const uint8_t *bytes = data->bytes(); if (etc1_pkm_is_valid(bytes)) { uint32_t encodedWidth = etc1_pkm_get_width(bytes); uint32_t encodedHeight = etc1_pkm_get_height(bytes); // Does the data match the dimensions of the bitmap? If not, // then we don't know how to scale the image to match it... if (encodedWidth != static_cast(bm.width()) || encodedHeight != static_cast(bm.height())) { return NULL; } // Everything seems good... skip ahead to the data. bytes += ETC_PKM_HEADER_SIZE; desc.fConfig = kETC1_GrPixelConfig; } else if (SkKTXFile::is_ktx(bytes)) { SkKTXFile ktx(data); // Is it actually an ETC1 texture? if (!ktx.isCompressedFormat(SkTextureCompressor::kETC1_Format)) { return NULL; } // Does the data match the dimensions of the bitmap? If not, // then we don't know how to scale the image to match it... if (ktx.width() != bm.width() || ktx.height() != bm.height()) { return NULL; } bytes = ktx.pixelData(); desc.fConfig = kETC1_GrPixelConfig; } else { return NULL; } return create_texture_for_bmp(ctx, optionalKey, desc, bm.pixelRef(), bytes, 0); } #endif // SK_IGNORE_ETC1_SUPPORT static GrTexture* load_yuv_texture(GrContext* ctx, const GrUniqueKey& optionalKey, const SkBitmap& bm, const GrSurfaceDesc& desc) { // Subsets are not supported, the whole pixelRef is loaded when using YUV decoding SkPixelRef* pixelRef = bm.pixelRef(); if ((NULL == pixelRef) || (pixelRef->info().width() != bm.info().width()) || (pixelRef->info().height() != bm.info().height())) { return NULL; } const bool useCache = optionalKey.isValid(); SkYUVPlanesCache::Info yuvInfo; SkAutoTUnref cachedData; SkAutoMalloc storage; if (useCache) { cachedData.reset(SkYUVPlanesCache::FindAndRef(pixelRef->getGenerationID(), &yuvInfo)); } void* planes[3]; if (cachedData.get()) { planes[0] = (void*)cachedData->data(); planes[1] = (uint8_t*)planes[0] + yuvInfo.fSizeInMemory[0]; planes[2] = (uint8_t*)planes[1] + yuvInfo.fSizeInMemory[1]; } else { // Fetch yuv plane sizes for memory allocation. Here, width and height can be // rounded up to JPEG block size and be larger than the image's width and height. if (!pixelRef->getYUV8Planes(yuvInfo.fSize, NULL, NULL, NULL)) { return NULL; } // Allocate the memory for YUV size_t totalSize(0); for (int i = 0; i < 3; ++i) { yuvInfo.fRowBytes[i] = yuvInfo.fSize[i].fWidth; yuvInfo.fSizeInMemory[i] = yuvInfo.fRowBytes[i] * yuvInfo.fSize[i].fHeight; totalSize += yuvInfo.fSizeInMemory[i]; } if (useCache) { cachedData.reset(SkResourceCache::NewCachedData(totalSize)); planes[0] = cachedData->writable_data(); } else { storage.reset(totalSize); planes[0] = storage.get(); } planes[1] = (uint8_t*)planes[0] + yuvInfo.fSizeInMemory[0]; planes[2] = (uint8_t*)planes[1] + yuvInfo.fSizeInMemory[1]; // Get the YUV planes and update plane sizes to actual image size if (!pixelRef->getYUV8Planes(yuvInfo.fSize, planes, yuvInfo.fRowBytes, &yuvInfo.fColorSpace)) { return NULL; } if (useCache) { // Decoding is done, cache the resulting YUV planes SkYUVPlanesCache::Add(pixelRef->getGenerationID(), cachedData, &yuvInfo); } } GrSurfaceDesc yuvDesc; yuvDesc.fConfig = kAlpha_8_GrPixelConfig; SkAutoTUnref yuvTextures[3]; for (int i = 0; i < 3; ++i) { yuvDesc.fWidth = yuvInfo.fSize[i].fWidth; yuvDesc.fHeight = yuvInfo.fSize[i].fHeight; bool needsExactTexture = (yuvDesc.fWidth != yuvInfo.fSize[0].fWidth) || (yuvDesc.fHeight != yuvInfo.fSize[0].fHeight); yuvTextures[i].reset(ctx->refScratchTexture(yuvDesc, needsExactTexture ? GrContext::kExact_ScratchTexMatch : GrContext::kApprox_ScratchTexMatch)); if (!yuvTextures[i] || !yuvTextures[i]->writePixels(0, 0, yuvDesc.fWidth, yuvDesc.fHeight, yuvDesc.fConfig, planes[i], yuvInfo.fRowBytes[i])) { return NULL; } } GrSurfaceDesc rtDesc = desc; rtDesc.fFlags = rtDesc.fFlags | kRenderTarget_GrSurfaceFlag; GrTexture* result = create_texture_for_bmp(ctx, optionalKey, rtDesc, pixelRef, NULL, 0); if (!result) { return NULL; } GrRenderTarget* renderTarget = result->asRenderTarget(); SkASSERT(renderTarget); SkAutoTUnref yuvToRgbProcessor(GrYUVtoRGBEffect::Create(yuvTextures[0], yuvTextures[1], yuvTextures[2], yuvInfo.fSize, yuvInfo.fColorSpace)); GrPaint paint; paint.addColorProcessor(yuvToRgbProcessor); SkRect r = SkRect::MakeWH(SkIntToScalar(yuvInfo.fSize[0].fWidth), SkIntToScalar(yuvInfo.fSize[0].fHeight)); ctx->drawRect(renderTarget, GrClip::WideOpen(), paint, SkMatrix::I(), r); return result; } static GrTexture* create_unstretched_bitmap_texture(GrContext* ctx, const SkBitmap& origBitmap, const GrUniqueKey& optionalKey) { SkBitmap tmpBitmap; const SkBitmap* bitmap = &origBitmap; GrSurfaceDesc desc; generate_bitmap_texture_desc(*bitmap, &desc); if (kIndex_8_SkColorType == bitmap->colorType()) { if (ctx->isConfigTexturable(kIndex_8_GrPixelConfig)) { size_t imageSize = GrCompressedFormatDataSize(kIndex_8_GrPixelConfig, bitmap->width(), bitmap->height()); SkAutoMalloc storage(imageSize); build_index8_data(storage.get(), origBitmap); // our compressed data will be trimmed, so pass width() for its // "rowBytes", since they are the same now. return create_texture_for_bmp(ctx, optionalKey, desc, origBitmap.pixelRef(), storage.get(), bitmap->width()); } else { origBitmap.copyTo(&tmpBitmap, kN32_SkColorType); // now bitmap points to our temp, which has been promoted to 32bits bitmap = &tmpBitmap; desc.fConfig = SkImageInfo2GrPixelConfig(bitmap->info()); } } // Is this an ETC1 encoded texture? #ifndef SK_IGNORE_ETC1_SUPPORT // Make sure that the underlying device supports ETC1 textures before we go ahead // and check the data. else if (ctx->isConfigTexturable(kETC1_GrPixelConfig) // If the bitmap had compressed data and was then uncompressed, it'll still return // compressed data on 'refEncodedData' and upload it. Probably not good, since if // the bitmap has available pixels, then they might not be what the decompressed // data is. && !(bitmap->readyToDraw())) { GrTexture *texture = load_etc1_texture(ctx, optionalKey, *bitmap, desc); if (texture) { return texture; } } #endif // SK_IGNORE_ETC1_SUPPORT GrTexture *texture = load_yuv_texture(ctx, optionalKey, *bitmap, desc); if (texture) { return texture; } SkAutoLockPixels alp(*bitmap); if (!bitmap->readyToDraw()) { return NULL; } return create_texture_for_bmp(ctx, optionalKey, desc, origBitmap.pixelRef(), bitmap->getPixels(), bitmap->rowBytes()); } static GrTexture* create_bitmap_texture(GrContext* ctx, const SkBitmap& bmp, Stretch stretch, const GrUniqueKey& unstretchedKey, const GrUniqueKey& stretchedKey) { if (kNo_Stretch != stretch) { SkAutoTUnref unstretched; // Check if we have the unstretched version in the cache, if not create it. if (unstretchedKey.isValid()) { unstretched.reset(ctx->findAndRefCachedTexture(unstretchedKey)); } if (!unstretched) { unstretched.reset(create_unstretched_bitmap_texture(ctx, bmp, unstretchedKey)); if (!unstretched) { return NULL; } } GrTexture* stretched = stretch_texture_to_next_pot(unstretched, stretch, bmp.pixelRef(), stretchedKey); return stretched; } return create_unstretched_bitmap_texture(ctx, bmp, unstretchedKey); } bool GrIsBitmapInCache(const GrContext* ctx, const SkBitmap& bitmap, const GrTextureParams* params) { Stretch stretch = get_stretch_type(ctx, bitmap.width(), bitmap.height(), params); // Handle the case where the bitmap is explicitly texture backed. GrTexture* texture = bitmap.getTexture(); if (texture) { if (kNo_Stretch == stretch) { return true; } // No keys for volatile bitmaps. if (bitmap.isVolatile()) { return false; } const GrUniqueKey& key = texture->getUniqueKey(); if (!key.isValid()) { return false; } GrUniqueKey stretchedKey; make_stretched_key(key, stretch, &stretchedKey); return ctx->isResourceInCache(stretchedKey); } // We don't cache volatile bitmaps if (bitmap.isVolatile()) { return false; } GrUniqueKey key, stretchedKey; make_bitmap_keys(bitmap, stretch, &key, &stretchedKey); return ctx->isResourceInCache((kNo_Stretch == stretch) ? key : stretchedKey); } GrTexture* GrRefCachedBitmapTexture(GrContext* ctx, const SkBitmap& bitmap, const GrTextureParams* params) { Stretch stretch = get_stretch_type(ctx, bitmap.width(), bitmap.height(), params); GrTexture* result = bitmap.getTexture(); if (result) { if (kNo_Stretch == stretch) { return SkRef(result); } GrUniqueKey stretchedKey; // Don't create a key for the resized version if the bmp is volatile. if (!bitmap.isVolatile()) { const GrUniqueKey& key = result->getUniqueKey(); if (key.isValid()) { make_stretched_key(key, stretch, &stretchedKey); GrTexture* stretched = ctx->findAndRefCachedTexture(stretchedKey); if (stretched) { return stretched; } } } return stretch_texture_to_next_pot(result, stretch, bitmap.pixelRef(), stretchedKey); } GrUniqueKey key, resizedKey; if (!bitmap.isVolatile()) { // If the bitmap isn't changing try to find a cached copy first. make_bitmap_keys(bitmap, stretch, &key, &resizedKey); result = ctx->findAndRefCachedTexture(resizedKey.isValid() ? resizedKey : key); if (result) { return result; } } result = create_bitmap_texture(ctx, bitmap, stretch, key, resizedKey); if (result) { return result; } SkErrorInternals::SetError( kInternalError_SkError, "---- failed to create texture for cache [%d %d]\n", bitmap.width(), bitmap.height()); return NULL; } /////////////////////////////////////////////////////////////////////////////// // alphatype is ignore for now, but if GrPixelConfig is expanded to encompass // alpha info, that will be considered. GrPixelConfig SkImageInfo2GrPixelConfig(SkColorType ct, SkAlphaType, SkColorProfileType pt) { switch (ct) { case kUnknown_SkColorType: return kUnknown_GrPixelConfig; case kAlpha_8_SkColorType: return kAlpha_8_GrPixelConfig; case kRGB_565_SkColorType: return kRGB_565_GrPixelConfig; case kARGB_4444_SkColorType: return kRGBA_4444_GrPixelConfig; case kRGBA_8888_SkColorType: // if (kSRGB_SkColorProfileType == pt) { // return kSRGBA_8888_GrPixelConfig; // } return kRGBA_8888_GrPixelConfig; case kBGRA_8888_SkColorType: return kBGRA_8888_GrPixelConfig; case kIndex_8_SkColorType: return kIndex_8_GrPixelConfig; } SkASSERT(0); // shouldn't get here return kUnknown_GrPixelConfig; } bool GrPixelConfig2ColorAndProfileType(GrPixelConfig config, SkColorType* ctOut, SkColorProfileType* ptOut) { SkColorType ct; SkColorProfileType pt = kLinear_SkColorProfileType; switch (config) { case kAlpha_8_GrPixelConfig: ct = kAlpha_8_SkColorType; break; case kIndex_8_GrPixelConfig: ct = kIndex_8_SkColorType; break; case kRGB_565_GrPixelConfig: ct = kRGB_565_SkColorType; break; case kRGBA_4444_GrPixelConfig: ct = kARGB_4444_SkColorType; break; case kRGBA_8888_GrPixelConfig: ct = kRGBA_8888_SkColorType; break; case kBGRA_8888_GrPixelConfig: ct = kBGRA_8888_SkColorType; break; case kSRGBA_8888_GrPixelConfig: ct = kRGBA_8888_SkColorType; pt = kSRGB_SkColorProfileType; break; default: return false; } if (ctOut) { *ctOut = ct; } if (ptOut) { *ptOut = pt; } return true; } /////////////////////////////////////////////////////////////////////////////// void SkPaint2GrPaintNoShader(GrContext* context, GrRenderTarget* rt, const SkPaint& skPaint, GrColor paintColor, bool constantColor, GrPaint* grPaint) { grPaint->setDither(skPaint.isDither()); grPaint->setAntiAlias(skPaint.isAntiAlias()); SkXfermode* mode = skPaint.getXfermode(); GrXPFactory* xpFactory = NULL; if (!SkXfermode::AsXPFactory(mode, &xpFactory)) { // Fall back to src-over xpFactory = GrPorterDuffXPFactory::Create(SkXfermode::kSrcOver_Mode); } SkASSERT(xpFactory); grPaint->setXPFactory(xpFactory)->unref(); //set the color of the paint to the one of the parameter grPaint->setColor(paintColor); SkColorFilter* colorFilter = skPaint.getColorFilter(); if (colorFilter) { // if the source color is a constant then apply the filter here once rather than per pixel // in a shader. if (constantColor) { SkColor filtered = colorFilter->filterColor(skPaint.getColor()); grPaint->setColor(SkColor2GrColor(filtered)); } else { SkTDArray array; if (colorFilter->asFragmentProcessors(context, &array)) { for (int i = 0; i < array.count(); ++i) { grPaint->addColorProcessor(array[i]); array[i]->unref(); } } } } #ifndef SK_IGNORE_GPU_DITHER // If the dither flag is set, then we need to see if the underlying context // supports it. If not, then install a dither effect. if (skPaint.isDither() && grPaint->numColorStages() > 0) { // What are we rendering into? SkASSERT(rt); // Suspect the dithering flag has no effect on these configs, otherwise // fall back on setting the appropriate state. if (GrPixelConfigIs8888(rt->config()) || GrPixelConfigIs8888(rt->config())) { // The dither flag is set and the target is likely // not going to be dithered by the GPU. SkAutoTUnref fp(GrDitherEffect::Create()); if (fp.get()) { grPaint->addColorProcessor(fp); grPaint->setDither(false); } } } #endif } void SkPaint2GrPaintShader(GrContext* context, GrRenderTarget* rt, const SkPaint& skPaint, const SkMatrix& viewM, bool constantColor, GrPaint* grPaint) { SkShader* shader = skPaint.getShader(); if (NULL == shader) { SkPaint2GrPaintNoShader(context, rt, skPaint, SkColor2GrColor(skPaint.getColor()), constantColor, grPaint); return; } GrColor paintColor = SkColor2GrColor(skPaint.getColor()); // Start a new block here in order to preserve our context state after calling // asFragmentProcessor(). Since these calls get passed back to the client, we don't really // want them messing around with the context. { // Allow the shader to modify paintColor and also create an effect to be installed as // the first color effect on the GrPaint. GrFragmentProcessor* fp = NULL; if (shader->asFragmentProcessor(context, skPaint, viewM, NULL, &paintColor, &fp) && fp) { grPaint->addColorProcessor(fp)->unref(); constantColor = false; } } // The grcolor is automatically set when calling asFragmentProcessor. // If the shader can be seen as an effect it returns true and adds its effect to the grpaint. SkPaint2GrPaintNoShader(context, rt, skPaint, paintColor, constantColor, grPaint); }