/* * Copyright 2010 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkGr.h" #include "GrBitmapTextureMaker.h" #include "GrCaps.h" #include "GrColorSpaceXform.h" #include "GrContext.h" #include "GrContextPriv.h" #include "GrGpuResourcePriv.h" #include "GrPaint.h" #include "GrProxyProvider.h" #include "GrTextureProxy.h" #include "GrTypes.h" #include "GrXferProcessor.h" #include "SkAutoMalloc.h" #include "SkBlendModePriv.h" #include "SkCanvas.h" #include "SkColorFilter.h" #include "SkData.h" #include "SkImage_Base.h" #include "SkImageInfoPriv.h" #include "SkImagePriv.h" #include "SkMaskFilterBase.h" #include "SkMessageBus.h" #include "SkMipMap.h" #include "SkPM4fPriv.h" #include "SkPaintPriv.h" #include "SkPixelRef.h" #include "SkResourceCache.h" #include "SkShaderBase.h" #include "SkTemplates.h" #include "SkTraceEvent.h" #include "effects/GrBicubicEffect.h" #include "effects/GrConstColorProcessor.h" #include "effects/GrPorterDuffXferProcessor.h" #include "effects/GrXfermodeFragmentProcessor.h" #include "effects/GrSkSLFP.h" const char* SKSL_DITHER_SRC = R"( // This controls the range of values added to color channels layout(key) in int rangeType; void main(int x, int y, inout half4 color) { half value; half range; @switch (rangeType) { case 0: range = 1.0 / 255.0; break; case 1: range = 1.0 / 63.0; break; default: // Experimentally this looks better than the expected value of 1/15. range = 1.0 / 15.0; break; } @if (sk_Caps.integerSupport) { // This ordered-dither code is lifted from the cpu backend. uint x = uint(x); uint y = uint(y); uint m = (y & 1) << 5 | (x & 1) << 4 | (y & 2) << 2 | (x & 2) << 1 | (y & 4) >> 1 | (x & 4) >> 2; value = half(m) * 1.0 / 64.0 - 63.0 / 128.0; } else { // Simulate the integer effect used above using step/mod. For speed, simulates a 4x4 // dither pattern rather than an 8x8 one. half4 modValues = mod(float4(x, y, x, y), half4(2.0, 2.0, 4.0, 4.0)); half4 stepValues = step(modValues, half4(1.0, 1.0, 2.0, 2.0)); value = dot(stepValues, half4(8.0 / 16.0, 4.0 / 16.0, 2.0 / 16.0, 1.0 / 16.0)) - 15.0 / 32.0; } // For each color channel, add the random offset to the channel value and then clamp // between 0 and alpha to keep the color premultiplied. color = half4(clamp(color.rgb + value * range, 0.0, color.a), color.a); } )"; GrSurfaceDesc GrImageInfoToSurfaceDesc(const SkImageInfo& info) { GrSurfaceDesc desc; desc.fFlags = kNone_GrSurfaceFlags; desc.fWidth = info.width(); desc.fHeight = info.height(); desc.fConfig = SkImageInfo2GrPixelConfig(info); desc.fSampleCnt = 1; return desc; } void GrMakeKeyFromImageID(GrUniqueKey* key, uint32_t imageID, const SkIRect& imageBounds) { SkASSERT(key); SkASSERT(imageID); SkASSERT(!imageBounds.isEmpty()); static const GrUniqueKey::Domain kImageIDDomain = GrUniqueKey::GenerateDomain(); GrUniqueKey::Builder builder(key, kImageIDDomain, 5, "Image"); builder[0] = imageID; builder[1] = imageBounds.fLeft; builder[2] = imageBounds.fTop; builder[3] = imageBounds.fRight; builder[4] = imageBounds.fBottom; } ////////////////////////////////////////////////////////////////////////////// sk_sp GrUploadBitmapToTextureProxy(GrProxyProvider* proxyProvider, const SkBitmap& bitmap) { if (!bitmap.peekPixels(nullptr)) { return nullptr; } if (!SkImageInfoIsValid(bitmap.info())) { return nullptr; } // In non-ddl we will always instantiate right away. Thus we never want to copy the SkBitmap // even if it's mutable. In ddl, if the bitmap is mutable then we must make a copy since the // upload of the data to the gpu can happen at anytime and the bitmap may change by then. SkCopyPixelsMode cpyMode = proxyProvider->recordingDDL() ? kIfMutable_SkCopyPixelsMode : kNever_SkCopyPixelsMode; sk_sp image = SkMakeImageFromRasterBitmap(bitmap, cpyMode); return proxyProvider->createTextureProxy(std::move(image), kNone_GrSurfaceFlags, 1, SkBudgeted::kYes, SkBackingFit::kExact); } //////////////////////////////////////////////////////////////////////////////// void GrInstallBitmapUniqueKeyInvalidator(const GrUniqueKey& key, uint32_t contextUniqueID, SkPixelRef* pixelRef) { class Invalidator : public SkPixelRef::GenIDChangeListener { public: explicit Invalidator(const GrUniqueKey& key, uint32_t contextUniqueID) : fMsg(key, contextUniqueID) {} private: GrUniqueKeyInvalidatedMessage fMsg; void onChange() override { SkMessageBus::Post(fMsg); } }; pixelRef->addGenIDChangeListener(new Invalidator(key, contextUniqueID)); } sk_sp GrCopyBaseMipMapToTextureProxy(GrContext* ctx, GrTextureProxy* baseProxy) { SkASSERT(baseProxy); if (!ctx->contextPriv().caps()->isConfigCopyable(baseProxy->config())) { return nullptr; } GrProxyProvider* proxyProvider = ctx->contextPriv().proxyProvider(); GrSurfaceDesc desc; desc.fFlags = kNone_GrSurfaceFlags; desc.fWidth = baseProxy->width(); desc.fHeight = baseProxy->height(); desc.fConfig = baseProxy->config(); desc.fSampleCnt = 1; sk_sp proxy = proxyProvider->createMipMapProxy(desc, baseProxy->origin(), SkBudgeted::kYes); if (!proxy) { return nullptr; } // Copy the base layer to our proxy sk_sp sContext = ctx->contextPriv().makeWrappedSurfaceContext(proxy); SkASSERT(sContext); SkAssertResult(sContext->copy(baseProxy)); return proxy; } sk_sp GrRefCachedBitmapTextureProxy(GrContext* ctx, const SkBitmap& bitmap, const GrSamplerState& params, SkScalar scaleAdjust[2]) { // Caller doesn't care about the texture's color space (they can always get it from the bitmap) return GrBitmapTextureMaker(ctx, bitmap).refTextureProxyForParams(params, nullptr, nullptr, scaleAdjust); } sk_sp GrMakeCachedBitmapProxy(GrProxyProvider* proxyProvider, const SkBitmap& bitmap, SkBackingFit fit) { if (!bitmap.peekPixels(nullptr)) { return nullptr; } // In non-ddl we will always instantiate right away. Thus we never want to copy the SkBitmap // even if its mutable. In ddl, if the bitmap is mutable then we must make a copy since the // upload of the data to the gpu can happen at anytime and the bitmap may change by then. SkCopyPixelsMode cpyMode = proxyProvider->recordingDDL() ? kIfMutable_SkCopyPixelsMode : kNever_SkCopyPixelsMode; sk_sp image = SkMakeImageFromRasterBitmap(bitmap, cpyMode); if (!image) { return nullptr; } return GrMakeCachedImageProxy(proxyProvider, std::move(image), fit); } static void create_unique_key_for_image(const SkImage* image, GrUniqueKey* result) { if (!image) { result->reset(); // will be invalid return; } if (const SkBitmap* bm = as_IB(image)->onPeekBitmap()) { if (!bm->isVolatile()) { SkIPoint origin = bm->pixelRefOrigin(); SkIRect subset = SkIRect::MakeXYWH(origin.fX, origin.fY, bm->width(), bm->height()); GrMakeKeyFromImageID(result, bm->getGenerationID(), subset); } return; } GrMakeKeyFromImageID(result, image->uniqueID(), image->bounds()); } sk_sp GrMakeCachedImageProxy(GrProxyProvider* proxyProvider, sk_sp srcImage, SkBackingFit fit) { sk_sp proxy; GrUniqueKey originalKey; create_unique_key_for_image(srcImage.get(), &originalKey); if (originalKey.isValid()) { proxy = proxyProvider->findOrCreateProxyByUniqueKey(originalKey, kTopLeft_GrSurfaceOrigin); } if (!proxy) { proxy = proxyProvider->createTextureProxy(srcImage, kNone_GrSurfaceFlags, 1, SkBudgeted::kYes, fit); if (proxy && originalKey.isValid()) { proxyProvider->assignUniqueKeyToProxy(originalKey, proxy.get()); const SkBitmap* bm = as_IB(srcImage.get())->onPeekBitmap(); // When recording DDLs we do not want to install change listeners because doing // so isn't threadsafe. if (bm && !proxyProvider->recordingDDL()) { GrInstallBitmapUniqueKeyInvalidator(originalKey, proxyProvider->contextUniqueID(), bm->pixelRef()); } } } return proxy; } /////////////////////////////////////////////////////////////////////////////// GrColor4f SkColorToPremulGrColor4f(SkColor c, const GrColorSpaceInfo& colorSpaceInfo) { // We want to premultiply after color space conversion, so this is easy: return SkColorToUnpremulGrColor4f(c, colorSpaceInfo).premul(); } GrColor4f SkColorToPremulGrColor4fLegacy(SkColor c) { return GrColor4f::FromGrColor(SkColorToUnpremulGrColor(c)).premul(); } GrColor4f SkColorToUnpremulGrColor4f(SkColor c, const GrColorSpaceInfo& colorSpaceInfo) { GrColor4f color = GrColor4f::FromGrColor(SkColorToUnpremulGrColor(c)); if (auto* xform = colorSpaceInfo.colorSpaceXformFromSRGB()) { color = xform->apply(color); } return color; } /////////////////////////////////////////////////////////////////////////////// GrPixelConfig SkColorType2GrPixelConfig(const SkColorType type) { switch (type) { case kUnknown_SkColorType: return kUnknown_GrPixelConfig; case kAlpha_8_SkColorType: return kAlpha_8_GrPixelConfig; case kRGB_565_SkColorType: return kRGB_565_GrPixelConfig; case kARGB_4444_SkColorType: return kRGBA_4444_GrPixelConfig; case kRGBA_8888_SkColorType: return kRGBA_8888_GrPixelConfig; case kRGB_888x_SkColorType: return kRGB_888_GrPixelConfig; case kBGRA_8888_SkColorType: return kBGRA_8888_GrPixelConfig; case kRGBA_1010102_SkColorType: return kRGBA_1010102_GrPixelConfig; case kRGB_101010x_SkColorType: return kUnknown_GrPixelConfig; case kGray_8_SkColorType: return kGray_8_GrPixelConfig; case kRGBA_F16_SkColorType: return kRGBA_half_GrPixelConfig; case kRGBA_F32_SkColorType: return kRGBA_float_GrPixelConfig; } SkASSERT(0); // shouldn't get here return kUnknown_GrPixelConfig; } GrPixelConfig SkImageInfo2GrPixelConfig(const SkImageInfo& info) { return SkColorType2GrPixelConfig(info.colorType()); } bool GrPixelConfigToColorType(GrPixelConfig config, SkColorType* ctOut) { SkColorType ct = GrColorTypeToSkColorType(GrPixelConfigToColorType(config)); if (kUnknown_SkColorType != ct) { if (ctOut) { *ctOut = ct; } return true; } return false; } //////////////////////////////////////////////////////////////////////////////////////////////// static inline bool blend_requires_shader(const SkBlendMode mode) { return SkBlendMode::kDst != mode; } #ifndef SK_IGNORE_GPU_DITHER static inline int32_t dither_range_type_for_config(GrPixelConfig dstConfig) { switch (dstConfig) { case kGray_8_GrPixelConfig: case kGray_8_as_Lum_GrPixelConfig: case kGray_8_as_Red_GrPixelConfig: case kRGBA_8888_GrPixelConfig: case kRGB_888_GrPixelConfig: case kBGRA_8888_GrPixelConfig: return 0; case kRGB_565_GrPixelConfig: return 1; case kRGBA_4444_GrPixelConfig: return 2; case kUnknown_GrPixelConfig: case kSRGBA_8888_GrPixelConfig: case kSBGRA_8888_GrPixelConfig: case kRGBA_1010102_GrPixelConfig: case kAlpha_half_GrPixelConfig: case kAlpha_half_as_Red_GrPixelConfig: case kRGBA_float_GrPixelConfig: case kRG_float_GrPixelConfig: case kRGBA_half_GrPixelConfig: case kAlpha_8_GrPixelConfig: case kAlpha_8_as_Alpha_GrPixelConfig: case kAlpha_8_as_Red_GrPixelConfig: return -1; } SkASSERT(false); return 0; } #endif static inline bool skpaint_to_grpaint_impl(GrContext* context, const GrColorSpaceInfo& colorSpaceInfo, const SkPaint& skPaint, const SkMatrix& viewM, std::unique_ptr* shaderProcessor, SkBlendMode* primColorMode, GrPaint* grPaint) { // Convert SkPaint color to 4f format in the destination color space GrColor4f origColor = SkColorToUnpremulGrColor4f(skPaint.getColor(), colorSpaceInfo); const GrFPArgs fpArgs(context, &viewM, skPaint.getFilterQuality(), &colorSpaceInfo); // Setup the initial color considering the shader, the SkPaint color, and the presence or not // of per-vertex colors. std::unique_ptr shaderFP; if (!primColorMode || blend_requires_shader(*primColorMode)) { if (shaderProcessor) { shaderFP = std::move(*shaderProcessor); } else if (const auto* shader = as_SB(skPaint.getShader())) { shaderFP = shader->asFragmentProcessor(fpArgs); if (!shaderFP) { return false; } } } // Set this in below cases if the output of the shader/paint-color/paint-alpha/primXfermode is // a known constant value. In that case we can simply apply a color filter during this // conversion without converting the color filter to a GrFragmentProcessor. bool applyColorFilterToPaintColor = false; if (shaderFP) { if (primColorMode) { // There is a blend between the primitive color and the shader color. The shader sees // the opaque paint color. The shader's output is blended using the provided mode by // the primitive color. The blended color is then modulated by the paint's alpha. // The geometry processor will insert the primitive color to start the color chain, so // the GrPaint color will be ignored. GrColor4f shaderInput = origColor.opaque(); shaderFP = GrFragmentProcessor::OverrideInput(std::move(shaderFP), shaderInput); shaderFP = GrXfermodeFragmentProcessor::MakeFromSrcProcessor(std::move(shaderFP), *primColorMode); // The above may return null if compose results in a pass through of the prim color. if (shaderFP) { grPaint->addColorFragmentProcessor(std::move(shaderFP)); } // We can ignore origColor here - alpha is unchanged by gamma GrColor paintAlpha = SkColorAlphaToGrColor(skPaint.getColor()); if (GrColor_WHITE != paintAlpha) { // No gamut conversion - paintAlpha is a (linear) alpha value, splatted to all // color channels. It's value should be treated as the same in ANY color space. grPaint->addColorFragmentProcessor(GrConstColorProcessor::Make( GrColor4f::FromGrColor(paintAlpha), GrConstColorProcessor::InputMode::kModulateRGBA)); } } else { // The shader's FP sees the paint unpremul color grPaint->setColor4f(origColor); grPaint->addColorFragmentProcessor(std::move(shaderFP)); } } else { if (primColorMode) { // There is a blend between the primitive color and the paint color. The blend considers // the opaque paint color. The paint's alpha is applied to the post-blended color. auto processor = GrConstColorProcessor::Make(origColor.opaque(), GrConstColorProcessor::InputMode::kIgnore); processor = GrXfermodeFragmentProcessor::MakeFromSrcProcessor(std::move(processor), *primColorMode); if (processor) { grPaint->addColorFragmentProcessor(std::move(processor)); } grPaint->setColor4f(origColor.opaque()); // We can ignore origColor here - alpha is unchanged by gamma GrColor paintAlpha = SkColorAlphaToGrColor(skPaint.getColor()); if (GrColor_WHITE != paintAlpha) { // No gamut conversion - paintAlpha is a (linear) alpha value, splatted to all // color channels. It's value should be treated as the same in ANY color space. grPaint->addColorFragmentProcessor(GrConstColorProcessor::Make( GrColor4f::FromGrColor(paintAlpha), GrConstColorProcessor::InputMode::kModulateRGBA)); } } else { // No shader, no primitive color. grPaint->setColor4f(origColor.premul()); applyColorFilterToPaintColor = true; } } SkColorFilter* colorFilter = skPaint.getColorFilter(); if (colorFilter) { if (applyColorFilterToPaintColor) { grPaint->setColor4f(GrColor4f::FromSkColor4f( colorFilter->filterColor4f(origColor.toSkColor4f())).premul()); } else { auto cfFP = colorFilter->asFragmentProcessor(context, colorSpaceInfo); if (cfFP) { grPaint->addColorFragmentProcessor(std::move(cfFP)); } else { return false; } } } SkMaskFilterBase* maskFilter = as_MFB(skPaint.getMaskFilter()); if (maskFilter) { if (auto mfFP = maskFilter->asFragmentProcessor(fpArgs)) { grPaint->addCoverageFragmentProcessor(std::move(mfFP)); } } // When the xfermode is null on the SkPaint (meaning kSrcOver) we need the XPFactory field on // the GrPaint to also be null (also kSrcOver). SkASSERT(!grPaint->getXPFactory()); if (!skPaint.isSrcOver()) { grPaint->setXPFactory(SkBlendMode_AsXPFactory(skPaint.getBlendMode())); } #ifndef SK_IGNORE_GPU_DITHER // Conservative default, in case GrPixelConfigToColorType() fails. SkColorType ct = SkColorType::kRGB_565_SkColorType; GrPixelConfigToColorType(colorSpaceInfo.config(), &ct); if (SkPaintPriv::ShouldDither(skPaint, ct) && grPaint->numColorFragmentProcessors() > 0) { int32_t ditherRange = dither_range_type_for_config(colorSpaceInfo.config()); if (ditherRange >= 0) { static int ditherIndex = GrSkSLFP::NewIndex(); auto ditherFP = GrSkSLFP::Make(context, ditherIndex, "Dither", SKSL_DITHER_SRC, &ditherRange, sizeof(ditherRange)); if (ditherFP) { grPaint->addColorFragmentProcessor(std::move(ditherFP)); } } } #endif return true; } bool SkPaintToGrPaint(GrContext* context, const GrColorSpaceInfo& colorSpaceInfo, const SkPaint& skPaint, const SkMatrix& viewM, GrPaint* grPaint) { return skpaint_to_grpaint_impl(context, colorSpaceInfo, skPaint, viewM, nullptr, nullptr, grPaint); } /** Replaces the SkShader (if any) on skPaint with the passed in GrFragmentProcessor. */ bool SkPaintToGrPaintReplaceShader(GrContext* context, const GrColorSpaceInfo& colorSpaceInfo, const SkPaint& skPaint, std::unique_ptr shaderFP, GrPaint* grPaint) { if (!shaderFP) { return false; } return skpaint_to_grpaint_impl(context, colorSpaceInfo, skPaint, SkMatrix::I(), &shaderFP, nullptr, grPaint); } /** Ignores the SkShader (if any) on skPaint. */ bool SkPaintToGrPaintNoShader(GrContext* context, const GrColorSpaceInfo& colorSpaceInfo, const SkPaint& skPaint, GrPaint* grPaint) { // Use a ptr to a nullptr to to indicate that the SkShader is ignored and not replaced. std::unique_ptr nullShaderFP(nullptr); return skpaint_to_grpaint_impl(context, colorSpaceInfo, skPaint, SkMatrix::I(), &nullShaderFP, nullptr, grPaint); } /** Blends the SkPaint's shader (or color if no shader) with a per-primitive color which must be setup as a vertex attribute using the specified SkBlendMode. */ bool SkPaintToGrPaintWithXfermode(GrContext* context, const GrColorSpaceInfo& colorSpaceInfo, const SkPaint& skPaint, const SkMatrix& viewM, SkBlendMode primColorMode, GrPaint* grPaint) { return skpaint_to_grpaint_impl(context, colorSpaceInfo, skPaint, viewM, nullptr, &primColorMode, grPaint); } bool SkPaintToGrPaintWithTexture(GrContext* context, const GrColorSpaceInfo& colorSpaceInfo, const SkPaint& paint, const SkMatrix& viewM, std::unique_ptr fp, bool textureIsAlphaOnly, GrPaint* grPaint) { std::unique_ptr shaderFP; if (textureIsAlphaOnly) { if (const auto* shader = as_SB(paint.getShader())) { shaderFP = shader->asFragmentProcessor(GrFPArgs( context, &viewM, paint.getFilterQuality(), &colorSpaceInfo)); if (!shaderFP) { return false; } std::unique_ptr fpSeries[] = { std::move(shaderFP), std::move(fp) }; shaderFP = GrFragmentProcessor::RunInSeries(fpSeries, 2); } else { shaderFP = GrFragmentProcessor::MakeInputPremulAndMulByOutput(std::move(fp)); } } else { shaderFP = GrFragmentProcessor::MulChildByInputAlpha(std::move(fp)); } return SkPaintToGrPaintReplaceShader(context, colorSpaceInfo, paint, std::move(shaderFP), grPaint); } //////////////////////////////////////////////////////////////////////////////////////////////// GrSamplerState::Filter GrSkFilterQualityToGrFilterMode(SkFilterQuality paintFilterQuality, const SkMatrix& viewM, const SkMatrix& localM, bool sharpenMipmappedTextures, bool* doBicubic) { *doBicubic = false; GrSamplerState::Filter textureFilterMode; switch (paintFilterQuality) { case kNone_SkFilterQuality: textureFilterMode = GrSamplerState::Filter::kNearest; break; case kLow_SkFilterQuality: textureFilterMode = GrSamplerState::Filter::kBilerp; break; case kMedium_SkFilterQuality: { SkMatrix matrix; matrix.setConcat(viewM, localM); // With sharp mips, we bias lookups by -0.5. That means our final LOD is >= 0 until the // computed LOD is >= 0.5. At what scale factor does a texture get an LOD of 0.5? // // Want: 0 = log2(1/s) - 0.5 // 0.5 = log2(1/s) // 2^0.5 = 1/s // 1/2^0.5 = s // 2^0.5/2 = s SkScalar mipScale = sharpenMipmappedTextures ? SK_ScalarRoot2Over2 : SK_Scalar1; if (matrix.getMinScale() < mipScale) { textureFilterMode = GrSamplerState::Filter::kMipMap; } else { // Don't trigger MIP level generation unnecessarily. textureFilterMode = GrSamplerState::Filter::kBilerp; } break; } case kHigh_SkFilterQuality: { SkMatrix matrix; matrix.setConcat(viewM, localM); *doBicubic = GrBicubicEffect::ShouldUseBicubic(matrix, &textureFilterMode); break; } default: // Should be unreachable. If not, fall back to mipmaps. textureFilterMode = GrSamplerState::Filter::kMipMap; break; } return textureFilterMode; }