/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkGpuDevice.h" #include "GrBlurUtils.h" #include "GrContext.h" #include "GrDrawContext.h" #include "GrFontScaler.h" #include "GrGpu.h" #include "GrGpuResourcePriv.h" #include "GrImageIDTextureAdjuster.h" #include "GrLayerHoister.h" #include "GrRecordReplaceDraw.h" #include "GrStrokeInfo.h" #include "GrTextContext.h" #include "GrTracing.h" #include "SkCanvasPriv.h" #include "SkDrawProcs.h" #include "SkErrorInternals.h" #include "SkGlyphCache.h" #include "SkGrTexturePixelRef.h" #include "SkGr.h" #include "SkGrPriv.h" #include "SkImage_Base.h" #include "SkImageFilter.h" #include "SkLayerInfo.h" #include "SkMaskFilter.h" #include "SkPathEffect.h" #include "SkPicture.h" #include "SkPictureData.h" #include "SkRRect.h" #include "SkRecord.h" #include "SkStroke.h" #include "SkSurface.h" #include "SkSurface_Gpu.h" #include "SkTLazy.h" #include "SkUtils.h" #include "SkVertState.h" #include "SkXfermode.h" #include "batches/GrRectBatchFactory.h" #include "effects/GrBicubicEffect.h" #include "effects/GrDashingEffect.h" #include "effects/GrSimpleTextureEffect.h" #include "effects/GrTextureDomain.h" #if SK_SUPPORT_GPU enum { kDefaultImageFilterCacheSize = 32 * 1024 * 1024 }; #if 0 extern bool (*gShouldDrawProc)(); #define CHECK_SHOULD_DRAW(draw) \ do { \ if (gShouldDrawProc && !gShouldDrawProc()) return; \ this->prepareDraw(draw); \ } while (0) #else #define CHECK_SHOULD_DRAW(draw) this->prepareDraw(draw) #endif // This constant represents the screen alignment criterion in texels for // requiring texture domain clamping to prevent color bleeding when drawing // a sub region of a larger source image. #define COLOR_BLEED_TOLERANCE 0.001f #define DO_DEFERRED_CLEAR() \ do { \ if (fNeedClear) { \ this->clearAll(); \ } \ } while (false) \ /////////////////////////////////////////////////////////////////////////////// #define CHECK_FOR_ANNOTATION(paint) \ do { if (paint.getAnnotation()) { return; } } while (0) /////////////////////////////////////////////////////////////////////////////// // Helper for turning a bitmap into a texture. If the bitmap is GrTexture backed this // just accesses the backing GrTexture. Otherwise, it creates a cached texture // representation and releases it in the destructor. class AutoBitmapTexture : public SkNoncopyable { public: AutoBitmapTexture() {} AutoBitmapTexture(GrContext* context, const SkBitmap& bitmap, const GrTextureParams& params, GrTexture** texture) { SkASSERT(texture); *texture = this->set(context, bitmap, params); } GrTexture* set(GrContext* context, const SkBitmap& bitmap, const GrTextureParams& params) { // Either get the texture directly from the bitmap, or else use the cache and // remember to unref it. if (GrTexture* bmpTexture = bitmap.getTexture()) { fTexture.reset(nullptr); return bmpTexture; } else { fTexture.reset(GrRefCachedBitmapTexture(context, bitmap, params)); return fTexture.get(); } } private: SkAutoTUnref fTexture; }; /////////////////////////////////////////////////////////////////////////////// struct GrSkDrawProcs : public SkDrawProcs { public: GrContext* fContext; GrTextContext* fTextContext; GrFontScaler* fFontScaler; // cached in the skia glyphcache }; /////////////////////////////////////////////////////////////////////////////// /** Checks that the alpha type is legal and gets constructor flags. Returns false if device creation should fail. */ bool SkGpuDevice::CheckAlphaTypeAndGetFlags( const SkImageInfo* info, SkGpuDevice::InitContents init, unsigned* flags) { *flags = 0; if (info) { switch (info->alphaType()) { case kPremul_SkAlphaType: break; case kOpaque_SkAlphaType: *flags |= SkGpuDevice::kIsOpaque_Flag; break; default: // If it is unpremul or unknown don't try to render return false; } } if (kClear_InitContents == init) { *flags |= kNeedClear_Flag; } return true; } SkGpuDevice* SkGpuDevice::Create(GrRenderTarget* rt, const SkSurfaceProps* props, InitContents init) { return SkGpuDevice::Create(rt, rt->width(), rt->height(), props, init); } SkGpuDevice* SkGpuDevice::Create(GrRenderTarget* rt, int width, int height, const SkSurfaceProps* props, InitContents init) { if (!rt || rt->wasDestroyed()) { return nullptr; } unsigned flags; if (!CheckAlphaTypeAndGetFlags(nullptr, init, &flags)) { return nullptr; } return new SkGpuDevice(rt, width, height, props, flags); } SkGpuDevice* SkGpuDevice::Create(GrContext* context, SkSurface::Budgeted budgeted, const SkImageInfo& info, int sampleCount, const SkSurfaceProps* props, InitContents init) { unsigned flags; if (!CheckAlphaTypeAndGetFlags(&info, init, &flags)) { return nullptr; } SkAutoTUnref rt(CreateRenderTarget(context, budgeted, info, sampleCount)); if (nullptr == rt) { return nullptr; } return new SkGpuDevice(rt, info.width(), info.height(), props, flags); } SkGpuDevice::SkGpuDevice(GrRenderTarget* rt, int width, int height, const SkSurfaceProps* props, unsigned flags) : INHERITED(SkSurfacePropsCopyOrDefault(props)) { fDrawProcs = nullptr; fContext = SkRef(rt->getContext()); fNeedClear = SkToBool(flags & kNeedClear_Flag); fOpaque = SkToBool(flags & kIsOpaque_Flag); fRenderTarget = SkRef(rt); SkAlphaType at = fOpaque ? kOpaque_SkAlphaType : kPremul_SkAlphaType; SkImageInfo info = rt->surfacePriv().info(at).makeWH(width, height); SkPixelRef* pr = new SkGrPixelRef(info, rt); fLegacyBitmap.setInfo(info); fLegacyBitmap.setPixelRef(pr)->unref(); fDrawContext.reset(this->context()->drawContext(rt, &this->surfaceProps())); } GrRenderTarget* SkGpuDevice::CreateRenderTarget(GrContext* context, SkSurface::Budgeted budgeted, const SkImageInfo& origInfo, int sampleCount) { if (kUnknown_SkColorType == origInfo.colorType() || origInfo.width() < 0 || origInfo.height() < 0) { return nullptr; } if (!context) { return nullptr; } SkColorType ct = origInfo.colorType(); SkAlphaType at = origInfo.alphaType(); if (kRGB_565_SkColorType == ct) { at = kOpaque_SkAlphaType; // force this setting } else if (ct != kBGRA_8888_SkColorType && ct != kRGBA_8888_SkColorType) { // Fall back from whatever ct was to default of kRGBA or kBGRA which is aliased as kN32 ct = kN32_SkColorType; } if (kOpaque_SkAlphaType != at) { at = kPremul_SkAlphaType; // force this setting } const SkImageInfo info = SkImageInfo::Make(origInfo.width(), origInfo.height(), ct, at); GrSurfaceDesc desc; desc.fFlags = kRenderTarget_GrSurfaceFlag; desc.fWidth = info.width(); desc.fHeight = info.height(); desc.fConfig = SkImageInfo2GrPixelConfig(info); desc.fSampleCnt = sampleCount; GrTexture* texture = context->textureProvider()->createTexture( desc, SkToBool(budgeted), nullptr, 0); if (nullptr == texture) { return nullptr; } SkASSERT(nullptr != texture->asRenderTarget()); return texture->asRenderTarget(); } SkGpuDevice::~SkGpuDevice() { if (fDrawProcs) { delete fDrawProcs; } fRenderTarget->unref(); fContext->unref(); } /////////////////////////////////////////////////////////////////////////////// bool SkGpuDevice::onReadPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRowBytes, int x, int y) { DO_DEFERRED_CLEAR(); // TODO: teach fRenderTarget to take ImageInfo directly to specify the src pixels GrPixelConfig config = SkImageInfo2GrPixelConfig(dstInfo); if (kUnknown_GrPixelConfig == config) { return false; } uint32_t flags = 0; if (kUnpremul_SkAlphaType == dstInfo.alphaType()) { flags = GrContext::kUnpremul_PixelOpsFlag; } return fRenderTarget->readPixels(x, y, dstInfo.width(), dstInfo.height(), config, dstPixels, dstRowBytes, flags); } bool SkGpuDevice::onWritePixels(const SkImageInfo& info, const void* pixels, size_t rowBytes, int x, int y) { // TODO: teach fRenderTarget to take ImageInfo directly to specify the src pixels GrPixelConfig config = SkImageInfo2GrPixelConfig(info); if (kUnknown_GrPixelConfig == config) { return false; } uint32_t flags = 0; if (kUnpremul_SkAlphaType == info.alphaType()) { flags = GrContext::kUnpremul_PixelOpsFlag; } fRenderTarget->writePixels(x, y, info.width(), info.height(), config, pixels, rowBytes, flags); // need to bump our genID for compatibility with clients that "know" we have a bitmap fLegacyBitmap.notifyPixelsChanged(); return true; } const SkBitmap& SkGpuDevice::onAccessBitmap() { DO_DEFERRED_CLEAR(); return fLegacyBitmap; } bool SkGpuDevice::onAccessPixels(SkPixmap* pmap) { DO_DEFERRED_CLEAR(); // For compatibility with clients the know we're backed w/ a bitmap, and want to inspect its // genID. When we can hide/remove that fact, we can eliminate this call to notify. // ... ugh. fLegacyBitmap.notifyPixelsChanged(); return false; } void SkGpuDevice::onAttachToCanvas(SkCanvas* canvas) { INHERITED::onAttachToCanvas(canvas); // Canvas promises that this ptr is valid until onDetachFromCanvas is called fClipStack.reset(SkRef(canvas->getClipStack())); } void SkGpuDevice::onDetachFromCanvas() { INHERITED::onDetachFromCanvas(); fClip.reset(); fClipStack.reset(nullptr); } // call this every draw call, to ensure that the context reflects our state, // and not the state from some other canvas/device void SkGpuDevice::prepareDraw(const SkDraw& draw) { SkASSERT(fClipStack.get()); SkASSERT(draw.fClipStack && draw.fClipStack == fClipStack); fClip.setClipStack(fClipStack, &this->getOrigin()); DO_DEFERRED_CLEAR(); } GrRenderTarget* SkGpuDevice::accessRenderTarget() { DO_DEFERRED_CLEAR(); return fRenderTarget; } void SkGpuDevice::clearAll() { GrColor color = 0; GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::clearAll", fContext); SkIRect rect = SkIRect::MakeWH(this->width(), this->height()); fDrawContext->clear(&rect, color, true); fNeedClear = false; } void SkGpuDevice::replaceRenderTarget(bool shouldRetainContent) { // Caller must have accessed the render target, because it knows the rt must be replaced. SkASSERT(!fNeedClear); SkSurface::Budgeted budgeted = fRenderTarget->resourcePriv().isBudgeted() ? SkSurface::kYes_Budgeted : SkSurface::kNo_Budgeted; SkAutoTUnref newRT(CreateRenderTarget( this->context(), budgeted, this->imageInfo(), fRenderTarget->desc().fSampleCnt)); if (nullptr == newRT) { return; } if (shouldRetainContent) { if (fRenderTarget->wasDestroyed()) { return; } this->context()->copySurface(newRT, fRenderTarget); } SkASSERT(fRenderTarget != newRT); fRenderTarget->unref(); fRenderTarget = newRT.detach(); #ifdef SK_DEBUG SkImageInfo info = fRenderTarget->surfacePriv().info(fOpaque ? kOpaque_SkAlphaType : kPremul_SkAlphaType); SkASSERT(info == fLegacyBitmap.info()); #endif SkPixelRef* pr = new SkGrPixelRef(fLegacyBitmap.info(), fRenderTarget); fLegacyBitmap.setPixelRef(pr)->unref(); fDrawContext.reset(this->context()->drawContext(fRenderTarget, &this->surfaceProps())); } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawPaint(const SkDraw& draw, const SkPaint& paint) { CHECK_SHOULD_DRAW(draw); GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawPaint", fContext); GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, &grPaint)) { return; } fDrawContext->drawPaint(fClip, grPaint, *draw.fMatrix); } // must be in SkCanvas::PointMode order static const GrPrimitiveType gPointMode2PrimtiveType[] = { kPoints_GrPrimitiveType, kLines_GrPrimitiveType, kLineStrip_GrPrimitiveType }; // suppress antialiasing on axis-aligned integer-coordinate lines static bool needs_antialiasing(SkCanvas::PointMode mode, size_t count, const SkPoint pts[]) { if (mode == SkCanvas::PointMode::kPoints_PointMode) { return false; } if (count == 2) { // We do not antialias as long as the primary axis of the line is integer-aligned, even if // the other coordinates are not. This does mean the two end pixels of the line will be // sharp even when they shouldn't be, but turning antialiasing on (as things stand // currently) means that the line will turn into a two-pixel-wide blur. While obviously a // more complete fix is possible down the road, for the time being we accept the error on // the two end pixels as being the lesser of two evils. if (pts[0].fX == pts[1].fX) { return ((int) pts[0].fX) != pts[0].fX; } if (pts[0].fY == pts[1].fY) { return ((int) pts[0].fY) != pts[0].fY; } } return true; } void SkGpuDevice::drawPoints(const SkDraw& draw, SkCanvas::PointMode mode, size_t count, const SkPoint pts[], const SkPaint& paint) { CHECK_FOR_ANNOTATION(paint); CHECK_SHOULD_DRAW(draw); SkScalar width = paint.getStrokeWidth(); if (width < 0) { return; } if (paint.getPathEffect() && 2 == count && SkCanvas::kLines_PointMode == mode) { GrStrokeInfo strokeInfo(paint, SkPaint::kStroke_Style); GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, &grPaint)) { return; } SkPath path; path.setIsVolatile(true); path.moveTo(pts[0]); path.lineTo(pts[1]); fDrawContext->drawPath(fClip, grPaint, *draw.fMatrix, path, strokeInfo); return; } // we only handle non-antialiased hairlines and paints without path effects or mask filters, // else we let the SkDraw call our drawPath() if (width > 0 || paint.getPathEffect() || paint.getMaskFilter() || (paint.isAntiAlias() && needs_antialiasing(mode, count, pts))) { draw.drawPoints(mode, count, pts, paint, true); return; } GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, &grPaint)) { return; } fDrawContext->drawVertices(fClip, grPaint, *draw.fMatrix, gPointMode2PrimtiveType[mode], SkToS32(count), (SkPoint*)pts, nullptr, nullptr, nullptr, 0); } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawRect(const SkDraw& draw, const SkRect& rect, const SkPaint& paint) { GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawRect", fContext); CHECK_FOR_ANNOTATION(paint); CHECK_SHOULD_DRAW(draw); bool doStroke = paint.getStyle() != SkPaint::kFill_Style; SkScalar width = paint.getStrokeWidth(); /* We have special code for hairline strokes, miter-strokes, bevel-stroke and fills. Anything else we just call our path code. */ bool usePath = doStroke && width > 0 && (paint.getStrokeJoin() == SkPaint::kRound_Join || (paint.getStrokeJoin() == SkPaint::kBevel_Join && rect.isEmpty())); // a few other reasons we might need to call drawPath... if (paint.getMaskFilter() || paint.getStyle() == SkPaint::kStrokeAndFill_Style) { // we can't both stroke and fill rects usePath = true; } if (!usePath && paint.isAntiAlias() && !draw.fMatrix->rectStaysRect()) { usePath = true; } GrStrokeInfo strokeInfo(paint); const SkPathEffect* pe = paint.getPathEffect(); if (!usePath && pe && !strokeInfo.isDashed()) { usePath = true; } if (usePath) { SkPath path; path.setIsVolatile(true); path.addRect(rect); this->drawPath(draw, path, paint, nullptr, true); return; } GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, &grPaint)) { return; } fDrawContext->drawRect(fClip, grPaint, *draw.fMatrix, rect, &strokeInfo); } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawRRect(const SkDraw& draw, const SkRRect& rect, const SkPaint& paint) { GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawRRect", fContext); CHECK_FOR_ANNOTATION(paint); CHECK_SHOULD_DRAW(draw); GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, &grPaint)) { return; } GrStrokeInfo strokeInfo(paint); if (paint.getMaskFilter()) { // try to hit the fast path for drawing filtered round rects SkRRect devRRect; if (rect.transform(*draw.fMatrix, &devRRect)) { if (devRRect.allCornersCircular()) { SkRect maskRect; if (paint.getMaskFilter()->canFilterMaskGPU(devRRect, draw.fClip->getBounds(), *draw.fMatrix, &maskRect)) { SkIRect finalIRect; maskRect.roundOut(&finalIRect); if (draw.fClip->quickReject(finalIRect)) { // clipped out return; } if (paint.getMaskFilter()->directFilterRRectMaskGPU(fContext->textureProvider(), fDrawContext, &grPaint, fClip, *draw.fMatrix, strokeInfo, devRRect)) { return; } } } } } bool usePath = false; if (paint.getMaskFilter()) { usePath = true; } else { const SkPathEffect* pe = paint.getPathEffect(); if (pe && !strokeInfo.isDashed()) { usePath = true; } } if (usePath) { SkPath path; path.setIsVolatile(true); path.addRRect(rect); this->drawPath(draw, path, paint, nullptr, true); return; } fDrawContext->drawRRect(fClip, grPaint, *draw.fMatrix, rect, strokeInfo); } void SkGpuDevice::drawDRRect(const SkDraw& draw, const SkRRect& outer, const SkRRect& inner, const SkPaint& paint) { SkStrokeRec stroke(paint); if (stroke.isFillStyle()) { CHECK_FOR_ANNOTATION(paint); CHECK_SHOULD_DRAW(draw); GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, &grPaint)) { return; } if (nullptr == paint.getMaskFilter() && nullptr == paint.getPathEffect()) { fDrawContext->drawDRRect(fClip, grPaint, *draw.fMatrix, outer, inner); return; } } SkPath path; path.setIsVolatile(true); path.addRRect(outer); path.addRRect(inner); path.setFillType(SkPath::kEvenOdd_FillType); this->drawPath(draw, path, paint, nullptr, true); } ///////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawOval(const SkDraw& draw, const SkRect& oval, const SkPaint& paint) { GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawOval", fContext); CHECK_FOR_ANNOTATION(paint); CHECK_SHOULD_DRAW(draw); GrStrokeInfo strokeInfo(paint); bool usePath = false; // some basic reasons we might need to call drawPath... if (paint.getMaskFilter()) { // The RRect path can handle special case blurring SkRRect rr = SkRRect::MakeOval(oval); return this->drawRRect(draw, rr, paint); } else { const SkPathEffect* pe = paint.getPathEffect(); if (pe && !strokeInfo.isDashed()) { usePath = true; } } if (usePath) { SkPath path; path.setIsVolatile(true); path.addOval(oval); this->drawPath(draw, path, paint, nullptr, true); return; } GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, &grPaint)) { return; } fDrawContext->drawOval(fClip, grPaint, *draw.fMatrix, oval, strokeInfo); } #include "SkMaskFilter.h" /////////////////////////////////////////////////////////////////////////////// static SkBitmap wrap_texture(GrTexture* texture, int width, int height) { SkBitmap result; result.setInfo(SkImageInfo::MakeN32Premul(width, height)); result.setPixelRef(new SkGrPixelRef(result.info(), texture))->unref(); return result; } void SkGpuDevice::drawPath(const SkDraw& draw, const SkPath& origSrcPath, const SkPaint& paint, const SkMatrix* prePathMatrix, bool pathIsMutable) { CHECK_FOR_ANNOTATION(paint); CHECK_SHOULD_DRAW(draw); GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawPath", fContext); GrBlurUtils::drawPathWithMaskFilter(fContext, fDrawContext, fRenderTarget, fClip, origSrcPath, paint, *draw.fMatrix, prePathMatrix, draw.fClip->getBounds(), pathIsMutable); } static const int kBmpSmallTileSize = 1 << 10; static inline int get_tile_count(const SkIRect& srcRect, int tileSize) { int tilesX = (srcRect.fRight / tileSize) - (srcRect.fLeft / tileSize) + 1; int tilesY = (srcRect.fBottom / tileSize) - (srcRect.fTop / tileSize) + 1; return tilesX * tilesY; } static int determine_tile_size(const SkIRect& src, int maxTileSize) { if (maxTileSize <= kBmpSmallTileSize) { return maxTileSize; } size_t maxTileTotalTileSize = get_tile_count(src, maxTileSize); size_t smallTotalTileSize = get_tile_count(src, kBmpSmallTileSize); maxTileTotalTileSize *= maxTileSize * maxTileSize; smallTotalTileSize *= kBmpSmallTileSize * kBmpSmallTileSize; if (maxTileTotalTileSize > 2 * smallTotalTileSize) { return kBmpSmallTileSize; } else { return maxTileSize; } } // Given a bitmap, an optional src rect, and a context with a clip and matrix determine what // pixels from the bitmap are necessary. static void determine_clipped_src_rect(const GrRenderTarget* rt, const GrClip& clip, const SkMatrix& viewMatrix, const SkISize& imageSize, const SkRect* srcRectPtr, SkIRect* clippedSrcIRect) { clip.getConservativeBounds(rt, clippedSrcIRect, nullptr); SkMatrix inv; if (!viewMatrix.invert(&inv)) { clippedSrcIRect->setEmpty(); return; } SkRect clippedSrcRect = SkRect::Make(*clippedSrcIRect); inv.mapRect(&clippedSrcRect); if (srcRectPtr) { // we've setup src space 0,0 to map to the top left of the src rect. clippedSrcRect.offset(srcRectPtr->fLeft, srcRectPtr->fTop); if (!clippedSrcRect.intersect(*srcRectPtr)) { clippedSrcIRect->setEmpty(); return; } } clippedSrcRect.roundOut(clippedSrcIRect); SkIRect bmpBounds = SkIRect::MakeSize(imageSize); if (!clippedSrcIRect->intersect(bmpBounds)) { clippedSrcIRect->setEmpty(); } } bool SkGpuDevice::shouldTileImageID(uint32_t imageID, const SkIRect& imageRect, const SkMatrix& viewMatrix, const GrTextureParams& params, const SkRect* srcRectPtr, int maxTileSize, int* tileSize, SkIRect* clippedSubset) const { // if it's larger than the max tile size, then we have no choice but tiling. if (imageRect.width() > maxTileSize || imageRect.height() > maxTileSize) { determine_clipped_src_rect(fRenderTarget, fClip, viewMatrix, imageRect.size(), srcRectPtr, clippedSubset); *tileSize = determine_tile_size(*clippedSubset, maxTileSize); return true; } // If the image would only produce 4 tiles of the smaller size, don't bother tiling it. const size_t area = imageRect.width() * imageRect.height(); if (area < 4 * kBmpSmallTileSize * kBmpSmallTileSize) { return false; } // At this point we know we could do the draw by uploading the entire bitmap // as a texture. However, if the texture would be large compared to the // cache size and we don't require most of it for this draw then tile to // reduce the amount of upload and cache spill. // assumption here is that sw bitmap size is a good proxy for its size as // a texture size_t bmpSize = area * sizeof(SkPMColor); // assume 32bit pixels size_t cacheSize; fContext->getResourceCacheLimits(nullptr, &cacheSize); if (bmpSize < cacheSize / 2) { return false; } // Figure out how much of the src we will need based on the src rect and clipping. Reject if // tiling memory savings would be < 50%. determine_clipped_src_rect(fRenderTarget, fClip, viewMatrix, imageRect.size(), srcRectPtr, clippedSubset); *tileSize = kBmpSmallTileSize; // already know whole bitmap fits in one max sized tile. size_t usedTileBytes = get_tile_count(*clippedSubset, kBmpSmallTileSize) * kBmpSmallTileSize * kBmpSmallTileSize; return usedTileBytes < 2 * bmpSize; } bool SkGpuDevice::shouldTileBitmap(const SkBitmap& bitmap, const SkMatrix& viewMatrix, const GrTextureParams& params, const SkRect* srcRectPtr, int maxTileSize, int* tileSize, SkIRect* clippedSrcRect) const { // if bitmap is explictly texture backed then just use the texture if (bitmap.getTexture()) { return false; } return this->shouldTileImageID(bitmap.getGenerationID(), bitmap.getSubset(), viewMatrix, params, srcRectPtr, maxTileSize, tileSize, clippedSrcRect); } bool SkGpuDevice::shouldTileImage(const SkImage* image, const SkRect* srcRectPtr, SkCanvas::SrcRectConstraint constraint, SkFilterQuality quality, const SkMatrix& viewMatrix) const { // if image is explictly texture backed then just use the texture if (as_IB(image)->peekTexture()) { return false; } GrTextureParams params; bool doBicubic; GrTextureParams::FilterMode textureFilterMode = GrSkFilterQualityToGrFilterMode(quality, viewMatrix, SkMatrix::I(), &doBicubic); int tileFilterPad; if (doBicubic) { tileFilterPad = GrBicubicEffect::kFilterTexelPad; } else if (GrTextureParams::kNone_FilterMode == textureFilterMode) { tileFilterPad = 0; } else { tileFilterPad = 1; } params.setFilterMode(textureFilterMode); int maxTileSize = fContext->caps()->maxTileSize() - 2 * tileFilterPad; // these are output, which we safely ignore, as we just want to know the predicate int outTileSize; SkIRect outClippedSrcRect; return this->shouldTileImageID(image->unique(), image->bounds(), viewMatrix, params, srcRectPtr, maxTileSize, &outTileSize, &outClippedSrcRect); } void SkGpuDevice::drawBitmap(const SkDraw& origDraw, const SkBitmap& bitmap, const SkMatrix& m, const SkPaint& paint) { GrTexture* texture = bitmap.getTexture(); if (texture) { CHECK_SHOULD_DRAW(origDraw); bool alphaOnly = kAlpha_8_SkColorType == bitmap.colorType(); GrBitmapTextureAdjuster adjuster(&bitmap); SkMatrix viewMatrix; viewMatrix.setConcat(*origDraw.fMatrix, m); this->drawTextureAdjuster(&adjuster, alphaOnly, nullptr, nullptr, SkCanvas::kFast_SrcRectConstraint, viewMatrix, fClip, paint); return; } SkMatrix concat; SkTCopyOnFirstWrite draw(origDraw); if (!m.isIdentity()) { concat.setConcat(*draw->fMatrix, m); draw.writable()->fMatrix = &concat; } this->drawBitmapCommon(*draw, bitmap, nullptr, nullptr, paint, SkCanvas::kStrict_SrcRectConstraint); } // This method outsets 'iRect' by 'outset' all around and then clamps its extents to // 'clamp'. 'offset' is adjusted to remain positioned over the top-left corner // of 'iRect' for all possible outsets/clamps. static inline void clamped_outset_with_offset(SkIRect* iRect, int outset, SkPoint* offset, const SkIRect& clamp) { iRect->outset(outset, outset); int leftClampDelta = clamp.fLeft - iRect->fLeft; if (leftClampDelta > 0) { offset->fX -= outset - leftClampDelta; iRect->fLeft = clamp.fLeft; } else { offset->fX -= outset; } int topClampDelta = clamp.fTop - iRect->fTop; if (topClampDelta > 0) { offset->fY -= outset - topClampDelta; iRect->fTop = clamp.fTop; } else { offset->fY -= outset; } if (iRect->fRight > clamp.fRight) { iRect->fRight = clamp.fRight; } if (iRect->fBottom > clamp.fBottom) { iRect->fBottom = clamp.fBottom; } } static bool has_aligned_samples(const SkRect& srcRect, const SkRect& transformedRect) { // detect pixel disalignment if (SkScalarAbs(SkScalarRoundToScalar(transformedRect.left()) - transformedRect.left()) < COLOR_BLEED_TOLERANCE && SkScalarAbs(SkScalarRoundToScalar(transformedRect.top()) - transformedRect.top()) < COLOR_BLEED_TOLERANCE && SkScalarAbs(transformedRect.width() - srcRect.width()) < COLOR_BLEED_TOLERANCE && SkScalarAbs(transformedRect.height() - srcRect.height()) < COLOR_BLEED_TOLERANCE) { return true; } return false; } static bool may_color_bleed(const SkRect& srcRect, const SkRect& transformedRect, const SkMatrix& m, bool isMSAA) { // Only gets called if has_aligned_samples returned false. // So we can assume that sampling is axis aligned but not texel aligned. SkASSERT(!has_aligned_samples(srcRect, transformedRect)); SkRect innerSrcRect(srcRect), innerTransformedRect, outerTransformedRect(transformedRect); if (isMSAA) { innerSrcRect.inset(SK_Scalar1, SK_Scalar1); } else { innerSrcRect.inset(SK_ScalarHalf, SK_ScalarHalf); } m.mapRect(&innerTransformedRect, innerSrcRect); // The gap between outerTransformedRect and innerTransformedRect // represents the projection of the source border area, which is // problematic for color bleeding. We must check whether any // destination pixels sample the border area. outerTransformedRect.inset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE); innerTransformedRect.outset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE); SkIRect outer, inner; outerTransformedRect.round(&outer); innerTransformedRect.round(&inner); // If the inner and outer rects round to the same result, it means the // border does not overlap any pixel centers. Yay! return inner != outer; } static bool needs_texture_domain(const SkBitmap& bitmap, const SkRect& srcRect, GrTextureParams ¶ms, const SkMatrix& contextMatrix, bool bicubic, bool isMSAA) { bool needsTextureDomain = false; GrTexture* tex = bitmap.getTexture(); int width = tex ? tex->width() : bitmap.width(); int height = tex ? tex->height() : bitmap.height(); if (bicubic || params.filterMode() != GrTextureParams::kNone_FilterMode) { // Need texture domain if drawing a sub rect needsTextureDomain = srcRect.width() < width || srcRect.height() < height; if (!bicubic && needsTextureDomain && contextMatrix.rectStaysRect()) { // sampling is axis-aligned SkRect transformedRect; contextMatrix.mapRect(&transformedRect, srcRect); if (has_aligned_samples(srcRect, transformedRect)) { params.setFilterMode(GrTextureParams::kNone_FilterMode); needsTextureDomain = false; } else { needsTextureDomain = may_color_bleed(srcRect, transformedRect, contextMatrix, isMSAA); } } } return needsTextureDomain; } static void draw_aa_bitmap(GrDrawContext* drawContext, GrContext* context, GrRenderTarget* renderTarget, const GrClip& clip, const SkMatrix& viewMatrix, const SkMatrix& srcRectToDstRect, const SkPaint& paint, const SkBitmap* bitmapPtr, const SkSize& dstSize) { SkShader::TileMode tm[] = { SkShader::kClamp_TileMode, SkShader::kClamp_TileMode, }; bool doBicubic; GrTextureParams::FilterMode textureFilterMode = GrSkFilterQualityToGrFilterMode(paint.getFilterQuality(), viewMatrix, srcRectToDstRect, &doBicubic); // Setup texture to wrap bitmap GrTextureParams params(tm, textureFilterMode); SkAutoTUnref texture(GrRefCachedBitmapTexture(context, *bitmapPtr, params)); if (!texture) { SkErrorInternals::SetError(kInternalError_SkError, "Couldn't convert bitmap to texture."); return; } GrPaint grPaint; // Create and insert texture effect SkAutoTUnref fp; if (doBicubic) { fp.reset(GrBicubicEffect::Create(texture, SkMatrix::I(), tm)); } else { fp.reset(GrSimpleTextureEffect::Create(texture, SkMatrix::I(), params)); } if (kAlpha_8_SkColorType == bitmapPtr->colorType()) { fp.reset(GrFragmentProcessor::MulOutputByInputUnpremulColor(fp)); } else { fp.reset(GrFragmentProcessor::MulOutputByInputAlpha(fp)); } if (!SkPaintToGrPaintReplaceShader(context, paint, fp, &grPaint)) { return; } // Setup dst rect and final matrix SkRect dstRect = {0, 0, dstSize.fWidth, dstSize.fHeight}; SkRect devRect; viewMatrix.mapRect(&devRect, dstRect); SkMatrix matrix; matrix.setIDiv(bitmapPtr->width(), bitmapPtr->height()); SkMatrix dstRectToSrcRect; if (!srcRectToDstRect.invert(&dstRectToSrcRect)) { return; } matrix.preConcat(dstRectToSrcRect); SkAutoTUnref batch(GrRectBatchFactory::CreateAAFill(grPaint.getColor(), viewMatrix, matrix, dstRect, devRect)); drawContext->drawBatch(clip, grPaint, batch); } static bool can_ignore_strict_subset_constraint(const SkBitmap& bitmap, const SkRect& subset) { GrTexture* tex = bitmap.getTexture(); int width = tex ? tex->width() : bitmap.width(); int height = tex ? tex->height() : bitmap.height(); return subset.contains(SkRect::MakeIWH(width, height)); } void SkGpuDevice::drawBitmapCommon(const SkDraw& draw, const SkBitmap& bitmap, const SkRect* srcRectPtr, const SkSize* dstSizePtr, const SkPaint& paint, SkCanvas::SrcRectConstraint constraint) { CHECK_SHOULD_DRAW(draw); SkRect srcRect; SkSize dstSize; // If there is no src rect, or the src rect contains the entire bitmap then we're effectively // in the (easier) bleed case, so update flags. if (nullptr == srcRectPtr) { SkScalar w = SkIntToScalar(bitmap.width()); SkScalar h = SkIntToScalar(bitmap.height()); dstSize.fWidth = w; dstSize.fHeight = h; srcRect.set(0, 0, w, h); } else { SkASSERT(dstSizePtr); srcRect = *srcRectPtr; dstSize = *dstSizePtr; } if (can_ignore_strict_subset_constraint(bitmap, srcRect)) { constraint = SkCanvas::kFast_SrcRectConstraint; } // If the render target is not msaa and draw is antialiased, we call // drawRect instead of drawing on the render target directly. // FIXME: the tiled bitmap code path doesn't currently support // anti-aliased edges, we work around that for now by drawing directly // if the image size exceeds maximum texture size. int maxTileSize = fContext->caps()->maxTileSize(); bool drawAA = !fRenderTarget->isUnifiedMultisampled() && paint.isAntiAlias() && bitmap.width() <= maxTileSize && bitmap.height() <= maxTileSize; if (paint.getMaskFilter() || drawAA) { // Convert the bitmap to a shader so that the rect can be drawn // through drawRect, which supports mask filters. SkBitmap tmp; // subset of bitmap, if necessary const SkBitmap* bitmapPtr = &bitmap; SkMatrix srcRectToDstRect; if (srcRectPtr) { srcRectToDstRect.setTranslate(-srcRectPtr->fLeft, -srcRectPtr->fTop); srcRectToDstRect.postScale(dstSize.fWidth / srcRectPtr->width(), dstSize.fHeight / srcRectPtr->height()); // In bleed mode we position and trim the bitmap based on the src rect which is // already accounted for in 'm' and 'srcRect'. In clamp mode we need to chop out // the desired portion of the bitmap and then update 'm' and 'srcRect' to // compensate. if (SkCanvas::kStrict_SrcRectConstraint == constraint) { SkIRect iSrc; srcRect.roundOut(&iSrc); SkPoint offset = SkPoint::Make(SkIntToScalar(iSrc.fLeft), SkIntToScalar(iSrc.fTop)); if (!bitmap.extractSubset(&tmp, iSrc)) { return; // extraction failed } bitmapPtr = &tmp; srcRect.offset(-offset.fX, -offset.fY); // The source rect has changed so update the matrix srcRectToDstRect.preTranslate(offset.fX, offset.fY); } } else { srcRectToDstRect.reset(); } // If we have a maskfilter then we can't batch, so we take a slow path. However, we fast // path the case where we are drawing an AA rect so we can batch many drawImageRect calls if (paint.getMaskFilter()) { SkPaint paintWithShader(paint); paintWithShader.setShader(SkShader::CreateBitmapShader(*bitmapPtr, SkShader::kClamp_TileMode, SkShader::kClamp_TileMode, &srcRectToDstRect))->unref(); SkRect dstRect = {0, 0, dstSize.fWidth, dstSize.fHeight}; this->drawRect(draw, dstRect, paintWithShader); } else { draw_aa_bitmap(fDrawContext, fContext, fRenderTarget, fClip, *draw.fMatrix, srcRectToDstRect, paint, bitmapPtr, dstSize); } return; } // If there is no mask filter than it is OK to handle the src rect -> dst rect scaling using // the view matrix rather than a local matrix. SkMatrix viewM = *draw.fMatrix; viewM.preScale(dstSize.fWidth / srcRect.width(), dstSize.fHeight / srcRect.height()); GrTextureParams params; bool doBicubic; GrTextureParams::FilterMode textureFilterMode = GrSkFilterQualityToGrFilterMode(paint.getFilterQuality(), viewM, SkMatrix::I(), &doBicubic); int tileFilterPad; if (doBicubic) { tileFilterPad = GrBicubicEffect::kFilterTexelPad; } else if (GrTextureParams::kNone_FilterMode == textureFilterMode) { tileFilterPad = 0; } else { tileFilterPad = 1; } params.setFilterMode(textureFilterMode); maxTileSize = fContext->caps()->maxTileSize() - 2 * tileFilterPad; int tileSize; SkIRect clippedSrcRect; if (this->shouldTileBitmap(bitmap, viewM, params, srcRectPtr, maxTileSize, &tileSize, &clippedSrcRect)) { this->drawTiledBitmap(bitmap, viewM, srcRect, clippedSrcRect, params, paint, constraint, tileSize, doBicubic); } else { // take the simple case bool needsTextureDomain = needs_texture_domain(bitmap, srcRect, params, viewM, doBicubic, fRenderTarget->isUnifiedMultisampled()); this->internalDrawBitmap(bitmap, viewM, srcRect, params, paint, constraint, doBicubic, needsTextureDomain); } } // Break 'bitmap' into several tiles to draw it since it has already // been determined to be too large to fit in VRAM void SkGpuDevice::drawTiledBitmap(const SkBitmap& bitmap, const SkMatrix& viewMatrix, const SkRect& srcRect, const SkIRect& clippedSrcIRect, const GrTextureParams& params, const SkPaint& origPaint, SkCanvas::SrcRectConstraint constraint, int tileSize, bool bicubic) { // The following pixel lock is technically redundant, but it is desirable // to lock outside of the tile loop to prevent redecoding the whole image // at each tile in cases where 'bitmap' holds an SkDiscardablePixelRef that // is larger than the limit of the discardable memory pool. SkAutoLockPixels alp(bitmap); const SkPaint* paint = &origPaint; SkPaint tempPaint; if (origPaint.isAntiAlias() && !fRenderTarget->isUnifiedMultisampled()) { // Drop antialiasing to avoid seams at tile boundaries. tempPaint = origPaint; tempPaint.setAntiAlias(false); paint = &tempPaint; } SkRect clippedSrcRect = SkRect::Make(clippedSrcIRect); int nx = bitmap.width() / tileSize; int ny = bitmap.height() / tileSize; for (int x = 0; x <= nx; x++) { for (int y = 0; y <= ny; y++) { SkRect tileR; tileR.set(SkIntToScalar(x * tileSize), SkIntToScalar(y * tileSize), SkIntToScalar((x + 1) * tileSize), SkIntToScalar((y + 1) * tileSize)); if (!SkRect::Intersects(tileR, clippedSrcRect)) { continue; } if (!tileR.intersect(srcRect)) { continue; } SkBitmap tmpB; SkIRect iTileR; tileR.roundOut(&iTileR); SkPoint offset = SkPoint::Make(SkIntToScalar(iTileR.fLeft), SkIntToScalar(iTileR.fTop)); // Adjust the context matrix to draw at the right x,y in device space SkMatrix viewM = viewMatrix; SkMatrix tmpM; tmpM.setTranslate(offset.fX - srcRect.fLeft, offset.fY - srcRect.fTop); viewM.preConcat(tmpM); if (GrTextureParams::kNone_FilterMode != params.filterMode() || bicubic) { SkIRect iClampRect; if (SkCanvas::kFast_SrcRectConstraint == constraint) { // In bleed mode we want to always expand the tile on all edges // but stay within the bitmap bounds iClampRect = SkIRect::MakeWH(bitmap.width(), bitmap.height()); } else { // In texture-domain/clamp mode we only want to expand the // tile on edges interior to "srcRect" (i.e., we want to // not bleed across the original clamped edges) srcRect.roundOut(&iClampRect); } int outset = bicubic ? GrBicubicEffect::kFilterTexelPad : 1; clamped_outset_with_offset(&iTileR, outset, &offset, iClampRect); } if (bitmap.extractSubset(&tmpB, iTileR)) { // now offset it to make it "local" to our tmp bitmap tileR.offset(-offset.fX, -offset.fY); GrTextureParams paramsTemp = params; bool needsTextureDomain = needs_texture_domain( bitmap, srcRect, paramsTemp, viewM, bicubic, fRenderTarget->isUnifiedMultisampled()); this->internalDrawBitmap(tmpB, viewM, tileR, paramsTemp, *paint, constraint, bicubic, needsTextureDomain); } } } } /* * This is called by drawBitmap(), which has to handle images that may be too * large to be represented by a single texture. * * internalDrawBitmap assumes that the specified bitmap will fit in a texture * and that non-texture portion of the GrPaint has already been setup. */ void SkGpuDevice::internalDrawBitmap(const SkBitmap& bitmap, const SkMatrix& viewMatrix, const SkRect& srcRect, const GrTextureParams& params, const SkPaint& paint, SkCanvas::SrcRectConstraint constraint, bool bicubic, bool needsTextureDomain) { // We should have already handled bitmaps larger than the max texture size. SkASSERT(bitmap.width() <= fContext->caps()->maxTextureSize() && bitmap.height() <= fContext->caps()->maxTextureSize()); // Unless the bitmap is inherently texture-backed, we should be respecting the max tile size // by the time we get here. SkASSERT(bitmap.getTexture() || (bitmap.width() <= fContext->caps()->maxTileSize() && bitmap.height() <= fContext->caps()->maxTileSize())); GrTexture* texture; AutoBitmapTexture abt(fContext, bitmap, params, &texture); if (nullptr == texture) { return; } SkRect dstRect = {0, 0, srcRect.width(), srcRect.height() }; SkRect paintRect; SkScalar wInv = SkScalarInvert(SkIntToScalar(texture->width())); SkScalar hInv = SkScalarInvert(SkIntToScalar(texture->height())); paintRect.setLTRB(SkScalarMul(srcRect.fLeft, wInv), SkScalarMul(srcRect.fTop, hInv), SkScalarMul(srcRect.fRight, wInv), SkScalarMul(srcRect.fBottom, hInv)); SkMatrix texMatrix; texMatrix.reset(); if (kAlpha_8_SkColorType == bitmap.colorType() && paint.getShader()) { // In cases where we are doing an A8 bitmap draw with a shader installed, we cannot use // local coords with the bitmap draw since it may mess up texture look ups for the shader. // Thus we need to pass in the transform matrix directly to the texture processor used for // the bitmap draw. texMatrix.setScale(wInv, hInv); } SkRect textureDomain = SkRect::MakeEmpty(); // Construct a GrPaint by setting the bitmap texture as the first effect and then configuring // the rest from the SkPaint. GrPaint grPaint; SkAutoTUnref fp; if (needsTextureDomain && (SkCanvas::kStrict_SrcRectConstraint == constraint)) { // Use a constrained texture domain to avoid color bleeding SkScalar left, top, right, bottom; if (srcRect.width() > SK_Scalar1) { SkScalar border = SK_ScalarHalf / texture->width(); left = paintRect.left() + border; right = paintRect.right() - border; } else { left = right = SkScalarHalf(paintRect.left() + paintRect.right()); } if (srcRect.height() > SK_Scalar1) { SkScalar border = SK_ScalarHalf / texture->height(); top = paintRect.top() + border; bottom = paintRect.bottom() - border; } else { top = bottom = SkScalarHalf(paintRect.top() + paintRect.bottom()); } textureDomain.setLTRB(left, top, right, bottom); if (bicubic) { fp.reset(GrBicubicEffect::Create(texture, texMatrix, textureDomain)); } else { fp.reset(GrTextureDomainEffect::Create(texture, texMatrix, textureDomain, GrTextureDomain::kClamp_Mode, params.filterMode())); } } else if (bicubic) { SkASSERT(GrTextureParams::kNone_FilterMode == params.filterMode()); SkShader::TileMode tileModes[2] = { params.getTileModeX(), params.getTileModeY() }; fp.reset(GrBicubicEffect::Create(texture, texMatrix, tileModes)); } else { fp.reset(GrSimpleTextureEffect::Create(texture, texMatrix, params)); } SkAutoTUnref shaderFP; if (kAlpha_8_SkColorType == bitmap.colorType()) { if (const SkShader* shader = paint.getShader()) { shaderFP.reset(shader->asFragmentProcessor(this->context(), viewMatrix, nullptr, paint.getFilterQuality())); if (!shaderFP) { return; } const GrFragmentProcessor* fpSeries[] = { shaderFP.get(), fp.get() }; fp.reset(GrFragmentProcessor::RunInSeries(fpSeries, 2)); } else { fp.reset(GrFragmentProcessor::MulOutputByInputUnpremulColor(fp)); } } else { fp.reset(GrFragmentProcessor::MulOutputByInputAlpha(fp)); } if (!SkPaintToGrPaintReplaceShader(this->context(), paint, fp, &grPaint)) { return; } if (kAlpha_8_SkColorType == bitmap.colorType() && paint.getShader()) { // We don't have local coords in this case and have previously set the transform // matrices directly on the texture processor. fDrawContext->drawRect(fClip, grPaint, viewMatrix, dstRect); } else { fDrawContext->fillRectToRect(fClip, grPaint, viewMatrix, dstRect, paintRect); } } bool SkGpuDevice::filterTexture(GrContext* context, GrTexture* texture, int width, int height, const SkImageFilter* filter, const SkImageFilter::Context& ctx, SkBitmap* result, SkIPoint* offset) { SkASSERT(filter); SkImageFilter::DeviceProxy proxy(this); if (filter->canFilterImageGPU()) { return filter->filterImageGPU(&proxy, wrap_texture(texture, width, height), ctx, result, offset); } else { return false; } } void SkGpuDevice::drawSprite(const SkDraw& draw, const SkBitmap& bitmap, int left, int top, const SkPaint& paint) { // drawSprite is defined to be in device coords. CHECK_SHOULD_DRAW(draw); SkAutoLockPixels alp(bitmap, !bitmap.getTexture()); if (!bitmap.getTexture() && !bitmap.readyToDraw()) { return; } int w = bitmap.width(); int h = bitmap.height(); GrTexture* texture; // draw sprite neither filters nor tiles. AutoBitmapTexture abt(fContext, bitmap, GrTextureParams::ClampNoFilter(), &texture); if (!texture) { return; } bool alphaOnly = kAlpha_8_SkColorType == bitmap.colorType(); SkImageFilter* filter = paint.getImageFilter(); // This bitmap will own the filtered result as a texture. SkBitmap filteredBitmap; if (filter) { SkIPoint offset = SkIPoint::Make(0, 0); SkMatrix matrix(*draw.fMatrix); matrix.postTranslate(SkIntToScalar(-left), SkIntToScalar(-top)); SkIRect clipBounds = SkIRect::MakeWH(bitmap.width(), bitmap.height()); SkAutoTUnref cache(getImageFilterCache()); // This cache is transient, and is freed (along with all its contained // textures) when it goes out of scope. SkImageFilter::Context ctx(matrix, clipBounds, cache, SkImageFilter::kApprox_SizeConstraint); if (this->filterTexture(fContext, texture, w, h, filter, ctx, &filteredBitmap, &offset)) { texture = (GrTexture*) filteredBitmap.getTexture(); w = filteredBitmap.width(); h = filteredBitmap.height(); left += offset.x(); top += offset.y(); } else { return; } SkASSERT(!GrPixelConfigIsAlphaOnly(texture->config())); alphaOnly = false; } GrPaint grPaint; SkAutoTUnref fp( GrSimpleTextureEffect::Create(texture, SkMatrix::I())); if (alphaOnly) { fp.reset(GrFragmentProcessor::MulOutputByInputUnpremulColor(fp)); } else { fp.reset(GrFragmentProcessor::MulOutputByInputAlpha(fp)); } if (!SkPaintToGrPaintReplaceShader(this->context(), paint, fp, &grPaint)) { return; } fDrawContext->fillRectToRect(fClip, grPaint, SkMatrix::I(), SkRect::MakeXYWH(SkIntToScalar(left), SkIntToScalar(top), SkIntToScalar(w), SkIntToScalar(h)), SkRect::MakeXYWH(0, 0, SK_Scalar1 * w / texture->width(), SK_Scalar1 * h / texture->height())); } void SkGpuDevice::drawBitmapRect(const SkDraw& origDraw, const SkBitmap& bitmap, const SkRect* src, const SkRect& dst, const SkPaint& paint, SkCanvas::SrcRectConstraint constraint) { if (GrTexture* tex = bitmap.getTexture()) { CHECK_SHOULD_DRAW(origDraw); bool alphaOnly = GrPixelConfigIsAlphaOnly(tex->config()); GrBitmapTextureAdjuster adjuster(&bitmap); this->drawTextureAdjuster(&adjuster, alphaOnly, src, &dst, constraint, *origDraw.fMatrix, fClip, paint); return; } SkMatrix matrix; SkRect bitmapBounds, tmpSrc; bitmapBounds.set(0, 0, SkIntToScalar(bitmap.width()), SkIntToScalar(bitmap.height())); // Compute matrix from the two rectangles if (src) { tmpSrc = *src; } else { tmpSrc = bitmapBounds; } matrix.setRectToRect(tmpSrc, dst, SkMatrix::kFill_ScaleToFit); // clip the tmpSrc to the bounds of the bitmap. No check needed if src==null. if (src) { if (!bitmapBounds.contains(tmpSrc)) { if (!tmpSrc.intersect(bitmapBounds)) { return; // nothing to draw } } } SkRect tmpDst; matrix.mapRect(&tmpDst, tmpSrc); SkTCopyOnFirstWrite draw(origDraw); if (0 != tmpDst.fLeft || 0 != tmpDst.fTop) { // Translate so that tempDst's top left is at the origin. matrix = *origDraw.fMatrix; matrix.preTranslate(tmpDst.fLeft, tmpDst.fTop); draw.writable()->fMatrix = &matrix; } SkSize dstSize; dstSize.fWidth = tmpDst.width(); dstSize.fHeight = tmpDst.height(); this->drawBitmapCommon(*draw, bitmap, &tmpSrc, &dstSize, paint, constraint); } void SkGpuDevice::drawDevice(const SkDraw& draw, SkBaseDevice* device, int x, int y, const SkPaint& paint) { // clear of the source device must occur before CHECK_SHOULD_DRAW GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawDevice", fContext); SkGpuDevice* dev = static_cast(device); // TODO: If the source device covers the whole of this device, we could // omit fNeedsClear -related flushing. // TODO: if source needs clear, we could maybe omit the draw fully. // drawDevice is defined to be in device coords. CHECK_SHOULD_DRAW(draw); GrRenderTarget* devRT = dev->accessRenderTarget(); GrTexture* devTex; if (nullptr == (devTex = devRT->asTexture())) { return; } const SkImageInfo ii = dev->imageInfo(); int w = ii.width(); int h = ii.height(); SkImageFilter* filter = paint.getImageFilter(); // This bitmap will own the filtered result as a texture. SkBitmap filteredBitmap; if (filter) { SkIPoint offset = SkIPoint::Make(0, 0); SkMatrix matrix(*draw.fMatrix); matrix.postTranslate(SkIntToScalar(-x), SkIntToScalar(-y)); SkIRect clipBounds = SkIRect::MakeWH(devTex->width(), devTex->height()); // This cache is transient, and is freed (along with all its contained // textures) when it goes out of scope. SkAutoTUnref cache(getImageFilterCache()); SkImageFilter::Context ctx(matrix, clipBounds, cache, SkImageFilter::kApprox_SizeConstraint); if (this->filterTexture(fContext, devTex, device->width(), device->height(), filter, ctx, &filteredBitmap, &offset)) { devTex = filteredBitmap.getTexture(); w = filteredBitmap.width(); h = filteredBitmap.height(); x += offset.fX; y += offset.fY; } else { return; } } GrPaint grPaint; SkAutoTUnref fp( GrSimpleTextureEffect::Create(devTex, SkMatrix::I())); if (GrPixelConfigIsAlphaOnly(devTex->config())) { // Can this happen? fp.reset(GrFragmentProcessor::MulOutputByInputUnpremulColor(fp)); } else { fp.reset(GrFragmentProcessor::MulOutputByInputAlpha(fp)); } if (!SkPaintToGrPaintReplaceShader(this->context(), paint, fp, &grPaint)) { return; } SkRect dstRect = SkRect::MakeXYWH(SkIntToScalar(x), SkIntToScalar(y), SkIntToScalar(w), SkIntToScalar(h)); // The device being drawn may not fill up its texture (e.g. saveLayer uses approximate // scratch texture). SkRect srcRect = SkRect::MakeWH(SK_Scalar1 * w / devTex->width(), SK_Scalar1 * h / devTex->height()); fDrawContext->fillRectToRect(fClip, grPaint, SkMatrix::I(), dstRect, srcRect); } bool SkGpuDevice::canHandleImageFilter(const SkImageFilter* filter) { return filter->canFilterImageGPU(); } bool SkGpuDevice::filterImage(const SkImageFilter* filter, const SkBitmap& src, const SkImageFilter::Context& ctx, SkBitmap* result, SkIPoint* offset) { // want explicitly our impl, so guard against a subclass of us overriding it if (!this->SkGpuDevice::canHandleImageFilter(filter)) { return false; } SkAutoLockPixels alp(src, !src.getTexture()); if (!src.getTexture() && !src.readyToDraw()) { return false; } GrTexture* texture; // We assume here that the filter will not attempt to tile the src. Otherwise, this cache lookup // must be pushed upstack. AutoBitmapTexture abt(fContext, src, GrTextureParams::ClampNoFilter(), &texture); if (!texture) { return false; } return this->filterTexture(fContext, texture, src.width(), src.height(), filter, ctx, result, offset); } static bool wrap_as_bm(GrContext* ctx, const SkImage* image, SkBitmap* bm) { // TODO: It is wrong to assume these texture params here. SkAutoTUnref tex(as_IB(image)->asTextureRef(ctx, GrTextureParams::ClampNoFilter())); if (tex) { GrWrapTextureInBitmap(tex, image->width(), image->height(), image->isOpaque(), bm); return true; } else { return as_IB(image)->getROPixels(bm); } } void SkGpuDevice::drawImage(const SkDraw& draw, const SkImage* image, SkScalar x, SkScalar y, const SkPaint& paint) { SkBitmap bm; if (GrTexture* tex = as_IB(image)->peekTexture()) { CHECK_SHOULD_DRAW(draw); SkMatrix viewMatrix = *draw.fMatrix; viewMatrix.preTranslate(x, y); bool alphaOnly = GrPixelConfigIsAlphaOnly(tex->config()); GrImageTextureAdjuster adjuster(as_IB(image)); this->drawTextureAdjuster(&adjuster, alphaOnly, nullptr, nullptr, SkCanvas::kFast_SrcRectConstraint, viewMatrix, fClip, paint); return; } else { if (this->shouldTileImage(image, nullptr, SkCanvas::kFast_SrcRectConstraint, paint.getFilterQuality(), *draw.fMatrix)) { // only support tiling as bitmap at the moment, so force raster-version if (!as_IB(image)->getROPixels(&bm)) { return; } } else { if (!wrap_as_bm(this->context(), image, &bm)) { return; } } } this->drawBitmap(draw, bm, SkMatrix::MakeTrans(x, y), paint); } void SkGpuDevice::drawImageRect(const SkDraw& draw, const SkImage* image, const SkRect* src, const SkRect& dst, const SkPaint& paint, SkCanvas::SrcRectConstraint constraint) { if (GrTexture* tex = as_IB(image)->peekTexture()) { CHECK_SHOULD_DRAW(draw); GrImageTextureAdjuster adjuster(as_IB(image)); bool alphaOnly = GrPixelConfigIsAlphaOnly(tex->config()); this->drawTextureAdjuster(&adjuster, alphaOnly, src, &dst, constraint, *draw.fMatrix, fClip, paint); return; } SkBitmap bm; SkMatrix viewMatrix = *draw.fMatrix; viewMatrix.preScale(dst.width() / (src ? src->width() : image->width()), dst.height() / (src ? src->height() : image->height())); if (this->shouldTileImage(image, src, constraint, paint.getFilterQuality(), viewMatrix)) { // only support tiling as bitmap at the moment, so force raster-version if (!as_IB(image)->getROPixels(&bm)) { return; } } else { if (!wrap_as_bm(this->context(), image, &bm)) { return; } } this->drawBitmapRect(draw, bm, src, dst, paint, constraint); } /////////////////////////////////////////////////////////////////////////////// // must be in SkCanvas::VertexMode order static const GrPrimitiveType gVertexMode2PrimitiveType[] = { kTriangles_GrPrimitiveType, kTriangleStrip_GrPrimitiveType, kTriangleFan_GrPrimitiveType, }; void SkGpuDevice::drawVertices(const SkDraw& draw, SkCanvas::VertexMode vmode, int vertexCount, const SkPoint vertices[], const SkPoint texs[], const SkColor colors[], SkXfermode* xmode, const uint16_t indices[], int indexCount, const SkPaint& paint) { CHECK_SHOULD_DRAW(draw); GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawVertices", fContext); // If both textures and vertex-colors are nullptr, strokes hairlines with the paint's color. if ((nullptr == texs || nullptr == paint.getShader()) && nullptr == colors) { texs = nullptr; SkPaint copy(paint); copy.setStyle(SkPaint::kStroke_Style); copy.setStrokeWidth(0); GrPaint grPaint; // we ignore the shader if texs is null. if (!SkPaintToGrPaintNoShader(this->context(), copy, &grPaint)) { return; } int triangleCount = 0; int n = (nullptr == indices) ? vertexCount : indexCount; switch (vmode) { case SkCanvas::kTriangles_VertexMode: triangleCount = n / 3; break; case SkCanvas::kTriangleStrip_VertexMode: case SkCanvas::kTriangleFan_VertexMode: triangleCount = n - 2; break; } VertState state(vertexCount, indices, indexCount); VertState::Proc vertProc = state.chooseProc(vmode); //number of indices for lines per triangle with kLines indexCount = triangleCount * 6; SkAutoTDeleteArray lineIndices(new uint16_t[indexCount]); int i = 0; while (vertProc(&state)) { lineIndices[i] = state.f0; lineIndices[i + 1] = state.f1; lineIndices[i + 2] = state.f1; lineIndices[i + 3] = state.f2; lineIndices[i + 4] = state.f2; lineIndices[i + 5] = state.f0; i += 6; } fDrawContext->drawVertices(fClip, grPaint, *draw.fMatrix, kLines_GrPrimitiveType, vertexCount, vertices, texs, colors, lineIndices.get(), indexCount); return; } GrPrimitiveType primType = gVertexMode2PrimitiveType[vmode]; SkAutoSTMalloc<128, GrColor> convertedColors(0); if (colors) { // need to convert byte order and from non-PM to PM. TODO: Keep unpremul until after // interpolation. convertedColors.reset(vertexCount); for (int i = 0; i < vertexCount; ++i) { convertedColors[i] = SkColorToPremulGrColor(colors[i]); } colors = convertedColors.get(); } GrPaint grPaint; if (texs && paint.getShader()) { if (colors) { // When there are texs and colors the shader and colors are combined using xmode. A null // xmode is defined to mean modulate. SkXfermode::Mode colorMode; if (xmode) { if (!xmode->asMode(&colorMode)) { return; } } else { colorMode = SkXfermode::kModulate_Mode; } if (!SkPaintToGrPaintWithXfermode(this->context(), paint, *draw.fMatrix, colorMode, false, &grPaint)) { return; } } else { // We have a shader, but no colors to blend it against. if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, &grPaint)) { return; } } } else { if (colors) { // We have colors, but either have no shader or no texture coords (which implies that // we should ignore the shader). if (!SkPaintToGrPaintWithPrimitiveColor(this->context(), paint, &grPaint)) { return; } } else { // No colors and no shaders. Just draw with the paint color. if (!SkPaintToGrPaintNoShader(this->context(), paint, &grPaint)) { return; } } } fDrawContext->drawVertices(fClip, grPaint, *draw.fMatrix, primType, vertexCount, vertices, texs, colors, indices, indexCount); } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawAtlas(const SkDraw& draw, const SkImage* atlas, const SkRSXform xform[], const SkRect texRect[], const SkColor colors[], int count, SkXfermode::Mode mode, const SkPaint& paint) { if (paint.isAntiAlias()) { this->INHERITED::drawAtlas(draw, atlas, xform, texRect, colors, count, mode, paint); return; } CHECK_SHOULD_DRAW(draw); GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawText", fContext); SkPaint p(paint); p.setShader(atlas->newShader(SkShader::kClamp_TileMode, SkShader::kClamp_TileMode))->unref(); GrPaint grPaint; if (colors) { if (!SkPaintToGrPaintWithXfermode(this->context(), p, *draw.fMatrix, mode, true, &grPaint)) { return; } } else { if (!SkPaintToGrPaint(this->context(), p, *draw.fMatrix, &grPaint)) { return; } } SkDEBUGCODE(this->validate();) fDrawContext->drawAtlas(fClip, grPaint, *draw.fMatrix, count, xform, texRect, colors); } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawText(const SkDraw& draw, const void* text, size_t byteLength, SkScalar x, SkScalar y, const SkPaint& paint) { CHECK_SHOULD_DRAW(draw); GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawText", fContext); GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, &grPaint)) { return; } SkDEBUGCODE(this->validate();) fDrawContext->drawText(fClip, grPaint, paint, *draw.fMatrix, (const char *)text, byteLength, x, y, draw.fClip->getBounds()); } void SkGpuDevice::drawPosText(const SkDraw& draw, const void* text, size_t byteLength, const SkScalar pos[], int scalarsPerPos, const SkPoint& offset, const SkPaint& paint) { GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawPosText", fContext); CHECK_SHOULD_DRAW(draw); GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, &grPaint)) { return; } SkDEBUGCODE(this->validate();) fDrawContext->drawPosText(fClip, grPaint, paint, *draw.fMatrix, (const char *)text, byteLength, pos, scalarsPerPos, offset, draw.fClip->getBounds()); } void SkGpuDevice::drawTextBlob(const SkDraw& draw, const SkTextBlob* blob, SkScalar x, SkScalar y, const SkPaint& paint, SkDrawFilter* drawFilter) { GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawTextBlob", fContext); CHECK_SHOULD_DRAW(draw); SkDEBUGCODE(this->validate();) fDrawContext->drawTextBlob(fClip, paint, *draw.fMatrix, blob, x, y, drawFilter, draw.fClip->getBounds()); } /////////////////////////////////////////////////////////////////////////////// bool SkGpuDevice::onShouldDisableLCD(const SkPaint& paint) const { return GrTextContext::ShouldDisableLCD(paint); } void SkGpuDevice::flush() { DO_DEFERRED_CLEAR(); fRenderTarget->prepareForExternalIO(); } /////////////////////////////////////////////////////////////////////////////// SkBaseDevice* SkGpuDevice::onCreateDevice(const CreateInfo& cinfo, const SkPaint*) { GrSurfaceDesc desc; desc.fConfig = fRenderTarget->config(); desc.fFlags = kRenderTarget_GrSurfaceFlag; desc.fWidth = cinfo.fInfo.width(); desc.fHeight = cinfo.fInfo.height(); desc.fSampleCnt = fRenderTarget->desc().fSampleCnt; SkAutoTUnref texture; // Skia's convention is to only clear a device if it is non-opaque. InitContents init = cinfo.fInfo.isOpaque() ? kUninit_InitContents : kClear_InitContents; // layers are never draw in repeat modes, so we can request an approx // match and ignore any padding. if (kNever_TileUsage == cinfo.fTileUsage) { texture.reset(fContext->textureProvider()->createApproxTexture(desc)); } else { texture.reset(fContext->textureProvider()->createTexture(desc, true)); } if (texture) { SkSurfaceProps props(this->surfaceProps().flags(), cinfo.fPixelGeometry); return SkGpuDevice::Create( texture->asRenderTarget(), cinfo.fInfo.width(), cinfo.fInfo.height(), &props, init); } else { SkErrorInternals::SetError( kInternalError_SkError, "---- failed to create gpu device texture [%d %d]\n", cinfo.fInfo.width(), cinfo.fInfo.height()); return nullptr; } } SkSurface* SkGpuDevice::newSurface(const SkImageInfo& info, const SkSurfaceProps& props) { // TODO: Change the signature of newSurface to take a budgeted parameter. static const SkSurface::Budgeted kBudgeted = SkSurface::kNo_Budgeted; return SkSurface::NewRenderTarget(fContext, kBudgeted, info, fRenderTarget->desc().fSampleCnt, &props); } bool SkGpuDevice::EXPERIMENTAL_drawPicture(SkCanvas* mainCanvas, const SkPicture* mainPicture, const SkMatrix* matrix, const SkPaint* paint) { #ifndef SK_IGNORE_GPU_LAYER_HOISTING // todo: should handle this natively if (paint) { return false; } const SkBigPicture::AccelData* data = nullptr; if (const SkBigPicture* bp = mainPicture->asSkBigPicture()) { data = bp->accelData(); } if (!data) { return false; } const SkLayerInfo *gpuData = static_cast(data); if (0 == gpuData->numBlocks()) { return false; } SkTDArray atlasedNeedRendering, atlasedRecycled; SkIRect iBounds; if (!mainCanvas->getClipDeviceBounds(&iBounds)) { return false; } SkRect clipBounds = SkRect::Make(iBounds); SkMatrix initialMatrix = mainCanvas->getTotalMatrix(); GrLayerHoister::FindLayersToAtlas(fContext, mainPicture, initialMatrix, clipBounds, &atlasedNeedRendering, &atlasedRecycled, fRenderTarget->numColorSamples()); GrLayerHoister::DrawLayersToAtlas(fContext, atlasedNeedRendering); SkTDArray needRendering, recycled; SkAutoCanvasMatrixPaint acmp(mainCanvas, matrix, paint, mainPicture->cullRect()); GrLayerHoister::FindLayersToHoist(fContext, mainPicture, initialMatrix, clipBounds, &needRendering, &recycled, fRenderTarget->numColorSamples()); GrLayerHoister::DrawLayers(fContext, needRendering); // Render the entire picture using new layers GrRecordReplaceDraw(mainPicture, mainCanvas, fContext->getLayerCache(), initialMatrix, nullptr); GrLayerHoister::UnlockLayers(fContext, needRendering); GrLayerHoister::UnlockLayers(fContext, recycled); GrLayerHoister::UnlockLayers(fContext, atlasedNeedRendering); GrLayerHoister::UnlockLayers(fContext, atlasedRecycled); return true; #else return false; #endif } SkImageFilter::Cache* SkGpuDevice::NewImageFilterCache() { return SkImageFilter::Cache::Create(kDefaultImageFilterCacheSize); } SkImageFilter::Cache* SkGpuDevice::getImageFilterCache() { // We always return a transient cache, so it is freed after each // filter traversal. return SkGpuDevice::NewImageFilterCache(); } #endif