/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkGpuDevice.h" #include "effects/GrTextureDomainEffect.h" #include "effects/GrSimpleTextureEffect.h" #include "GrContext.h" #include "GrTextContext.h" #include "SkGrTexturePixelRef.h" #include "SkColorFilter.h" #include "SkDeviceImageFilterProxy.h" #include "SkDrawProcs.h" #include "SkGlyphCache.h" #include "SkImageFilter.h" #include "SkPathEffect.h" #include "SkRRect.h" #include "SkStroke.h" #include "SkUtils.h" #define CACHE_COMPATIBLE_DEVICE_TEXTURES 1 #if 0 extern bool (*gShouldDrawProc)(); #define CHECK_SHOULD_DRAW(draw, forceI) \ do { \ if (gShouldDrawProc && !gShouldDrawProc()) return; \ this->prepareDraw(draw, forceI); \ } while (0) #else #define CHECK_SHOULD_DRAW(draw, forceI) this->prepareDraw(draw, forceI) #endif // we use the same effect slot on GrPaint for bitmaps and shaders (since drawBitmap, drawSprite, // and drawDevice ignore SkShader) enum { kShaderEffectIdx = 0, kBitmapEffectIdx = 0, kColorFilterEffectIdx = 1, kXfermodeEffectIdx = 2, }; #define MAX_BLUR_SIGMA 4.0f // FIXME: This value comes from from SkBlurMaskFilter.cpp. // Should probably be put in a common header someplace. #define MAX_BLUR_RADIUS SkIntToScalar(128) // This constant approximates the scaling done in the software path's // "high quality" mode, in SkBlurMask::Blur() (1 / sqrt(3)). // IMHO, it actually should be 1: we blur "less" than we should do // according to the CSS and canvas specs, simply because Safari does the same. // Firefox used to do the same too, until 4.0 where they fixed it. So at some // point we should probably get rid of these scaling constants and rebaseline // all the blur tests. #define BLUR_SIGMA_SCALE 0.6f // This constant represents the screen alignment criterion in texels for // requiring texture domain clamping to prevent color bleeding when drawing // a sub region of a larger source image. #define COLOR_BLEED_TOLERANCE SkFloatToScalar(0.001f) #define DO_DEFERRED_CLEAR() \ do { \ if (fNeedClear) { \ this->clear(SK_ColorTRANSPARENT); \ } \ } while (false) \ /////////////////////////////////////////////////////////////////////////////// #define CHECK_FOR_NODRAW_ANNOTATION(paint) \ do { if (paint.isNoDrawAnnotation()) { return; } } while (0) /////////////////////////////////////////////////////////////////////////////// class SkGpuDevice::SkAutoCachedTexture : public ::SkNoncopyable { public: SkAutoCachedTexture() : fDevice(NULL) , fTexture(NULL) { } SkAutoCachedTexture(SkGpuDevice* device, const SkBitmap& bitmap, const GrTextureParams* params, GrTexture** texture) : fDevice(NULL) , fTexture(NULL) { GrAssert(NULL != texture); *texture = this->set(device, bitmap, params); } ~SkAutoCachedTexture() { if (NULL != fTexture) { GrUnlockAndUnrefCachedBitmapTexture(fTexture); } } GrTexture* set(SkGpuDevice* device, const SkBitmap& bitmap, const GrTextureParams* params) { if (NULL != fTexture) { GrUnlockAndUnrefCachedBitmapTexture(fTexture); fTexture = NULL; } fDevice = device; GrTexture* result = (GrTexture*)bitmap.getTexture(); if (NULL == result) { // Cannot return the native texture so look it up in our cache fTexture = GrLockAndRefCachedBitmapTexture(device->context(), bitmap, params); result = fTexture; } return result; } private: SkGpuDevice* fDevice; GrTexture* fTexture; }; /////////////////////////////////////////////////////////////////////////////// struct GrSkDrawProcs : public SkDrawProcs { public: GrContext* fContext; GrTextContext* fTextContext; GrFontScaler* fFontScaler; // cached in the skia glyphcache }; /////////////////////////////////////////////////////////////////////////////// static SkBitmap::Config grConfig2skConfig(GrPixelConfig config, bool* isOpaque) { switch (config) { case kAlpha_8_GrPixelConfig: *isOpaque = false; return SkBitmap::kA8_Config; case kRGB_565_GrPixelConfig: *isOpaque = true; return SkBitmap::kRGB_565_Config; case kRGBA_4444_GrPixelConfig: *isOpaque = false; return SkBitmap::kARGB_4444_Config; case kSkia8888_GrPixelConfig: // we don't currently have a way of knowing whether // a 8888 is opaque based on the config. *isOpaque = false; return SkBitmap::kARGB_8888_Config; default: *isOpaque = false; return SkBitmap::kNo_Config; } } static SkBitmap make_bitmap(GrContext* context, GrRenderTarget* renderTarget) { GrPixelConfig config = renderTarget->config(); bool isOpaque; SkBitmap bitmap; bitmap.setConfig(grConfig2skConfig(config, &isOpaque), renderTarget->width(), renderTarget->height()); bitmap.setIsOpaque(isOpaque); return bitmap; } SkGpuDevice* SkGpuDevice::Create(GrSurface* surface) { GrAssert(NULL != surface); if (NULL == surface->asRenderTarget() || NULL == surface->getContext()) { return NULL; } if (surface->asTexture()) { return SkNEW_ARGS(SkGpuDevice, (surface->getContext(), surface->asTexture())); } else { return SkNEW_ARGS(SkGpuDevice, (surface->getContext(), surface->asRenderTarget())); } } SkGpuDevice::SkGpuDevice(GrContext* context, GrTexture* texture) : SkDevice(make_bitmap(context, texture->asRenderTarget())) { this->initFromRenderTarget(context, texture->asRenderTarget(), false); } SkGpuDevice::SkGpuDevice(GrContext* context, GrRenderTarget* renderTarget) : SkDevice(make_bitmap(context, renderTarget)) { this->initFromRenderTarget(context, renderTarget, false); } void SkGpuDevice::initFromRenderTarget(GrContext* context, GrRenderTarget* renderTarget, bool cached) { fDrawProcs = NULL; fContext = context; fContext->ref(); fRenderTarget = NULL; fNeedClear = false; GrAssert(NULL != renderTarget); fRenderTarget = renderTarget; fRenderTarget->ref(); // Hold onto to the texture in the pixel ref (if there is one) because the texture holds a ref // on the RT but not vice-versa. // TODO: Remove this trickery once we figure out how to make SkGrPixelRef do this without // busting chrome (for a currently unknown reason). GrSurface* surface = fRenderTarget->asTexture(); if (NULL == surface) { surface = fRenderTarget; } SkPixelRef* pr = SkNEW_ARGS(SkGrPixelRef, (surface, cached)); this->setPixelRef(pr, 0)->unref(); } SkGpuDevice::SkGpuDevice(GrContext* context, SkBitmap::Config config, int width, int height, int sampleCount) : SkDevice(config, width, height, false /*isOpaque*/) { fDrawProcs = NULL; fContext = context; fContext->ref(); fRenderTarget = NULL; fNeedClear = false; if (config != SkBitmap::kRGB_565_Config) { config = SkBitmap::kARGB_8888_Config; } GrTextureDesc desc; desc.fFlags = kRenderTarget_GrTextureFlagBit; desc.fWidth = width; desc.fHeight = height; desc.fConfig = SkBitmapConfig2GrPixelConfig(config); desc.fSampleCnt = sampleCount; SkAutoTUnref texture(fContext->createUncachedTexture(desc, NULL, 0)); if (NULL != texture) { fRenderTarget = texture->asRenderTarget(); fRenderTarget->ref(); GrAssert(NULL != fRenderTarget); // wrap the bitmap with a pixelref to expose our texture SkGrPixelRef* pr = SkNEW_ARGS(SkGrPixelRef, (texture)); this->setPixelRef(pr, 0)->unref(); } else { GrPrintf("--- failed to create gpu-offscreen [%d %d]\n", width, height); GrAssert(false); } } SkGpuDevice::~SkGpuDevice() { if (fDrawProcs) { delete fDrawProcs; } // The GrContext takes a ref on the target. We don't want to cause the render // target to be unnecessarily kept alive. if (fContext->getRenderTarget() == fRenderTarget) { fContext->setRenderTarget(NULL); } if (fContext->getClip() == &fClipData) { fContext->setClip(NULL); } SkSafeUnref(fRenderTarget); fContext->unref(); } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::makeRenderTargetCurrent() { DO_DEFERRED_CLEAR(); fContext->setRenderTarget(fRenderTarget); } /////////////////////////////////////////////////////////////////////////////// namespace { GrPixelConfig config8888_to_grconfig_and_flags(SkCanvas::Config8888 config8888, uint32_t* flags) { switch (config8888) { case SkCanvas::kNative_Premul_Config8888: *flags = 0; return kSkia8888_GrPixelConfig; case SkCanvas::kNative_Unpremul_Config8888: *flags = GrContext::kUnpremul_PixelOpsFlag; return kSkia8888_GrPixelConfig; case SkCanvas::kBGRA_Premul_Config8888: *flags = 0; return kBGRA_8888_GrPixelConfig; case SkCanvas::kBGRA_Unpremul_Config8888: *flags = GrContext::kUnpremul_PixelOpsFlag; return kBGRA_8888_GrPixelConfig; case SkCanvas::kRGBA_Premul_Config8888: *flags = 0; return kRGBA_8888_GrPixelConfig; case SkCanvas::kRGBA_Unpremul_Config8888: *flags = GrContext::kUnpremul_PixelOpsFlag; return kRGBA_8888_GrPixelConfig; default: GrCrash("Unexpected Config8888."); *flags = 0; // suppress warning return kSkia8888_GrPixelConfig; } } } bool SkGpuDevice::onReadPixels(const SkBitmap& bitmap, int x, int y, SkCanvas::Config8888 config8888) { DO_DEFERRED_CLEAR(); SkASSERT(SkBitmap::kARGB_8888_Config == bitmap.config()); SkASSERT(!bitmap.isNull()); SkASSERT(SkIRect::MakeWH(this->width(), this->height()).contains(SkIRect::MakeXYWH(x, y, bitmap.width(), bitmap.height()))); SkAutoLockPixels alp(bitmap); GrPixelConfig config; uint32_t flags; config = config8888_to_grconfig_and_flags(config8888, &flags); return fContext->readRenderTargetPixels(fRenderTarget, x, y, bitmap.width(), bitmap.height(), config, bitmap.getPixels(), bitmap.rowBytes(), flags); } void SkGpuDevice::writePixels(const SkBitmap& bitmap, int x, int y, SkCanvas::Config8888 config8888) { SkAutoLockPixels alp(bitmap); if (!bitmap.readyToDraw()) { return; } GrPixelConfig config; uint32_t flags; if (SkBitmap::kARGB_8888_Config == bitmap.config()) { config = config8888_to_grconfig_and_flags(config8888, &flags); } else { flags = 0; config= SkBitmapConfig2GrPixelConfig(bitmap.config()); } fRenderTarget->writePixels(x, y, bitmap.width(), bitmap.height(), config, bitmap.getPixels(), bitmap.rowBytes(), flags); } namespace { void purgeClipCB(int genID, void* ) { if (SkClipStack::kInvalidGenID == genID || SkClipStack::kEmptyGenID == genID || SkClipStack::kWideOpenGenID == genID) { // none of these cases will have a cached clip mask return; } } }; void SkGpuDevice::onAttachToCanvas(SkCanvas* canvas) { INHERITED::onAttachToCanvas(canvas); // Canvas promises that this ptr is valid until onDetachFromCanvas is called fClipData.fClipStack = canvas->getClipStack(); fClipData.fClipStack->addPurgeClipCallback(purgeClipCB, fContext); } void SkGpuDevice::onDetachFromCanvas() { INHERITED::onDetachFromCanvas(); // TODO: iterate through the clip stack and clean up any cached clip masks fClipData.fClipStack->removePurgeClipCallback(purgeClipCB, fContext); fClipData.fClipStack = NULL; } #ifdef SK_DEBUG static void check_bounds(const GrClipData& clipData, const SkRegion& clipRegion, int renderTargetWidth, int renderTargetHeight) { SkIRect devBound; devBound.setLTRB(0, 0, renderTargetWidth, renderTargetHeight); SkClipStack::BoundsType boundType; SkRect canvTemp; clipData.fClipStack->getBounds(&canvTemp, &boundType); if (SkClipStack::kNormal_BoundsType == boundType) { SkIRect devTemp; canvTemp.roundOut(&devTemp); devTemp.offset(-clipData.fOrigin.fX, -clipData.fOrigin.fY); if (!devBound.intersect(devTemp)) { devBound.setEmpty(); } } GrAssert(devBound.contains(clipRegion.getBounds())); } #endif /////////////////////////////////////////////////////////////////////////////// // call this every draw call, to ensure that the context reflects our state, // and not the state from some other canvas/device void SkGpuDevice::prepareDraw(const SkDraw& draw, bool forceIdentity) { GrAssert(NULL != fClipData.fClipStack); fContext->setRenderTarget(fRenderTarget); SkASSERT(draw.fClipStack && draw.fClipStack == fClipData.fClipStack); if (forceIdentity) { fContext->setIdentityMatrix(); } else { fContext->setMatrix(*draw.fMatrix); } fClipData.fOrigin = this->getOrigin(); #ifdef SK_DEBUG check_bounds(fClipData, *draw.fClip, fRenderTarget->width(), fRenderTarget->height()); #endif fContext->setClip(&fClipData); DO_DEFERRED_CLEAR(); } SkGpuRenderTarget* SkGpuDevice::accessRenderTarget() { DO_DEFERRED_CLEAR(); return (SkGpuRenderTarget*)fRenderTarget; } bool SkGpuDevice::bindDeviceAsTexture(GrPaint* paint) { GrTexture* texture = fRenderTarget->asTexture(); if (NULL != texture) { paint->colorStage(kBitmapEffectIdx)->setEffect( GrSimpleTextureEffect::Create(texture, SkMatrix::I()))->unref(); return true; } return false; } /////////////////////////////////////////////////////////////////////////////// SK_COMPILE_ASSERT(SkShader::kNone_BitmapType == 0, shader_type_mismatch); SK_COMPILE_ASSERT(SkShader::kDefault_BitmapType == 1, shader_type_mismatch); SK_COMPILE_ASSERT(SkShader::kRadial_BitmapType == 2, shader_type_mismatch); SK_COMPILE_ASSERT(SkShader::kSweep_BitmapType == 3, shader_type_mismatch); SK_COMPILE_ASSERT(SkShader::kTwoPointRadial_BitmapType == 4, shader_type_mismatch); SK_COMPILE_ASSERT(SkShader::kTwoPointConical_BitmapType == 5, shader_type_mismatch); SK_COMPILE_ASSERT(SkShader::kLinear_BitmapType == 6, shader_type_mismatch); SK_COMPILE_ASSERT(SkShader::kLast_BitmapType == 6, shader_type_mismatch); namespace { // converts a SkPaint to a GrPaint, ignoring the skPaint's shader // justAlpha indicates that skPaint's alpha should be used rather than the color // Callers may subsequently modify the GrPaint. Setting constantColor indicates // that the final paint will draw the same color at every pixel. This allows // an optimization where the the color filter can be applied to the skPaint's // color once while converting to GrPaint and then ignored. inline bool skPaint2GrPaintNoShader(SkGpuDevice* dev, const SkPaint& skPaint, bool justAlpha, bool constantColor, GrPaint* grPaint) { grPaint->setDither(skPaint.isDither()); grPaint->setAntiAlias(skPaint.isAntiAlias()); SkXfermode::Coeff sm; SkXfermode::Coeff dm; SkXfermode* mode = skPaint.getXfermode(); GrEffectRef* xferEffect = NULL; if (SkXfermode::AsNewEffectOrCoeff(mode, dev->context(), &xferEffect, &sm, &dm)) { if (NULL != xferEffect) { grPaint->colorStage(kXfermodeEffectIdx)->setEffect(xferEffect)->unref(); sm = SkXfermode::kOne_Coeff; dm = SkXfermode::kZero_Coeff; } } else { //SkDEBUGCODE(SkDebugf("Unsupported xfer mode.\n");) #if 0 return false; #else // Fall back to src-over sm = SkXfermode::kOne_Coeff; dm = SkXfermode::kISA_Coeff; #endif } grPaint->setBlendFunc(sk_blend_to_grblend(sm), sk_blend_to_grblend(dm)); if (justAlpha) { uint8_t alpha = skPaint.getAlpha(); grPaint->setColor(GrColorPackRGBA(alpha, alpha, alpha, alpha)); // justAlpha is currently set to true only if there is a texture, // so constantColor should not also be true. GrAssert(!constantColor); } else { grPaint->setColor(SkColor2GrColor(skPaint.getColor())); GrAssert(!grPaint->isColorStageEnabled(kShaderEffectIdx)); } SkColorFilter* colorFilter = skPaint.getColorFilter(); if (NULL != colorFilter) { // if the source color is a constant then apply the filter here once rather than per pixel // in a shader. if (constantColor) { SkColor filtered = colorFilter->filterColor(skPaint.getColor()); grPaint->setColor(SkColor2GrColor(filtered)); } else { SkAutoTUnref effect(colorFilter->asNewEffect(dev->context())); if (NULL != effect.get()) { grPaint->colorStage(kColorFilterEffectIdx)->setEffect(effect); } else { // TODO: rewrite this using asNewEffect() SkColor color; SkXfermode::Mode filterMode; if (colorFilter->asColorMode(&color, &filterMode)) { grPaint->setXfermodeColorFilter(filterMode, SkColor2GrColor(color)); } } } } return true; } // This function is similar to skPaint2GrPaintNoShader but also converts // skPaint's shader to a GrTexture/GrEffectStage if possible. The texture to // be used is set on grPaint and returned in param act. constantColor has the // same meaning as in skPaint2GrPaintNoShader. inline bool skPaint2GrPaintShader(SkGpuDevice* dev, const SkPaint& skPaint, bool constantColor, GrPaint* grPaint) { SkShader* shader = skPaint.getShader(); if (NULL == shader) { return skPaint2GrPaintNoShader(dev, skPaint, false, constantColor, grPaint); } else if (!skPaint2GrPaintNoShader(dev, skPaint, true, false, grPaint)) { return false; } SkAutoTUnref effect(shader->asNewEffect(dev->context(), skPaint)); if (NULL != effect.get()) { grPaint->colorStage(kShaderEffectIdx)->setEffect(effect); return true; } // We still don't have SkColorShader::asNewEffect() implemented. SkShader::GradientInfo info; SkColor color; info.fColors = &color; info.fColorOffsets = NULL; info.fColorCount = 1; if (SkShader::kColor_GradientType == shader->asAGradient(&info)) { SkPaint copy(skPaint); copy.setShader(NULL); // modulate the paint alpha by the shader's solid color alpha U8CPU newA = SkMulDiv255Round(SkColorGetA(color), copy.getAlpha()); copy.setColor(SkColorSetA(color, newA)); return skPaint2GrPaintNoShader(dev, copy, false, constantColor, grPaint); } return false; } } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::clear(SkColor color) { SkIRect rect = SkIRect::MakeWH(this->width(), this->height()); fContext->clear(&rect, SkColor2GrColor(color), fRenderTarget); fNeedClear = false; } void SkGpuDevice::drawPaint(const SkDraw& draw, const SkPaint& paint) { CHECK_SHOULD_DRAW(draw, false); GrPaint grPaint; if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { return; } fContext->drawPaint(grPaint); } // must be in SkCanvas::PointMode order static const GrPrimitiveType gPointMode2PrimtiveType[] = { kPoints_GrPrimitiveType, kLines_GrPrimitiveType, kLineStrip_GrPrimitiveType }; void SkGpuDevice::drawPoints(const SkDraw& draw, SkCanvas::PointMode mode, size_t count, const SkPoint pts[], const SkPaint& paint) { CHECK_FOR_NODRAW_ANNOTATION(paint); CHECK_SHOULD_DRAW(draw, false); SkScalar width = paint.getStrokeWidth(); if (width < 0) { return; } // we only handle hairlines and paints without path effects or mask filters, // else we let the SkDraw call our drawPath() if (width > 0 || paint.getPathEffect() || paint.getMaskFilter()) { draw.drawPoints(mode, count, pts, paint, true); return; } GrPaint grPaint; if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { return; } fContext->drawVertices(grPaint, gPointMode2PrimtiveType[mode], count, (GrPoint*)pts, NULL, NULL, NULL, 0); } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawRect(const SkDraw& draw, const SkRect& rect, const SkPaint& paint) { CHECK_FOR_NODRAW_ANNOTATION(paint); CHECK_SHOULD_DRAW(draw, false); bool doStroke = paint.getStyle() != SkPaint::kFill_Style; SkScalar width = paint.getStrokeWidth(); /* We have special code for hairline strokes, miter-strokes, and fills. Anything else we just call our path code. */ bool usePath = doStroke && width > 0 && paint.getStrokeJoin() != SkPaint::kMiter_Join; // another two reasons we might need to call drawPath... if (paint.getMaskFilter() || paint.getPathEffect()) { usePath = true; } if (!usePath && paint.isAntiAlias() && !fContext->getMatrix().rectStaysRect()) { #if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT) if (doStroke) { #endif usePath = true; #if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT) } else { usePath = !fContext->getMatrix().preservesRightAngles(); } #endif } // small miter limit means right angles show bevel... if (SkPaint::kMiter_Join == paint.getStrokeJoin() && paint.getStrokeMiter() < SK_ScalarSqrt2) { usePath = true; } // until we can both stroke and fill rectangles if (paint.getStyle() == SkPaint::kStrokeAndFill_Style) { usePath = true; } if (usePath) { SkPath path; path.addRect(rect); this->drawPath(draw, path, paint, NULL, true); return; } GrPaint grPaint; if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { return; } fContext->drawRect(grPaint, rect, doStroke ? width : -1); } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawRRect(const SkDraw& draw, const SkRRect& rect, const SkPaint& paint) { CHECK_FOR_NODRAW_ANNOTATION(paint); CHECK_SHOULD_DRAW(draw, false); bool usePath = !rect.isSimple(); // another two reasons we might need to call drawPath... if (paint.getMaskFilter() || paint.getPathEffect()) { usePath = true; } // until we can rotate rrects... if (!usePath && !fContext->getMatrix().rectStaysRect()) { usePath = true; } if (usePath) { SkPath path; path.addRRect(rect); this->drawPath(draw, path, paint, NULL, true); return; } GrPaint grPaint; if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { return; } SkStrokeRec stroke(paint); fContext->drawRRect(grPaint, rect, stroke); } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawOval(const SkDraw& draw, const SkRect& oval, const SkPaint& paint) { CHECK_FOR_NODRAW_ANNOTATION(paint); CHECK_SHOULD_DRAW(draw, false); bool usePath = false; // some basic reasons we might need to call drawPath... if (paint.getMaskFilter() || paint.getPathEffect()) { usePath = true; } if (usePath) { SkPath path; path.addOval(oval); this->drawPath(draw, path, paint, NULL, true); return; } GrPaint grPaint; if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { return; } SkStrokeRec stroke(paint); fContext->drawOval(grPaint, oval, stroke); } #include "SkMaskFilter.h" #include "SkBounder.h" /////////////////////////////////////////////////////////////////////////////// // helpers for applying mask filters namespace { // We prefer to blur small rect with small radius via CPU. #define MIN_GPU_BLUR_SIZE SkIntToScalar(64) #define MIN_GPU_BLUR_RADIUS SkIntToScalar(32) inline bool shouldDrawBlurWithCPU(const SkRect& rect, SkScalar radius) { if (rect.width() <= MIN_GPU_BLUR_SIZE && rect.height() <= MIN_GPU_BLUR_SIZE && radius <= MIN_GPU_BLUR_RADIUS) { return true; } return false; } bool drawWithGPUMaskFilter(GrContext* context, const SkPath& devPath, const SkStrokeRec& stroke, SkMaskFilter* filter, const SkRegion& clip, SkBounder* bounder, GrPaint* grp) { SkMaskFilter::BlurInfo info; SkMaskFilter::BlurType blurType = filter->asABlur(&info); if (SkMaskFilter::kNone_BlurType == blurType) { return false; } SkScalar radius = info.fIgnoreTransform ? info.fRadius : context->getMatrix().mapRadius(info.fRadius); radius = SkMinScalar(radius, MAX_BLUR_RADIUS); if (radius <= 0) { return false; } SkRect srcRect = devPath.getBounds(); if (shouldDrawBlurWithCPU(srcRect, radius)) { return false; } float sigma = SkScalarToFloat(radius) * BLUR_SIGMA_SCALE; float sigma3 = sigma * 3.0f; SkRect clipRect; clipRect.set(clip.getBounds()); // Outset srcRect and clipRect by 3 * sigma, to compute affected blur area. srcRect.inset(SkFloatToScalar(-sigma3), SkFloatToScalar(-sigma3)); clipRect.inset(SkFloatToScalar(-sigma3), SkFloatToScalar(-sigma3)); srcRect.intersect(clipRect); SkRect finalRect = srcRect; SkIRect finalIRect; finalRect.roundOut(&finalIRect); if (clip.quickReject(finalIRect)) { return true; } if (bounder && !bounder->doIRect(finalIRect)) { return true; } GrPoint offset = GrPoint::Make(-srcRect.fLeft, -srcRect.fTop); srcRect.offset(offset); GrTextureDesc desc; desc.fFlags = kRenderTarget_GrTextureFlagBit; desc.fWidth = SkScalarCeilToInt(srcRect.width()); desc.fHeight = SkScalarCeilToInt(srcRect.height()); // We actually only need A8, but it often isn't supported as a // render target so default to RGBA_8888 desc.fConfig = kRGBA_8888_GrPixelConfig; if (context->isConfigRenderable(kAlpha_8_GrPixelConfig)) { desc.fConfig = kAlpha_8_GrPixelConfig; } GrAutoScratchTexture pathEntry(context, desc); GrTexture* pathTexture = pathEntry.texture(); if (NULL == pathTexture) { return false; } SkAutoTUnref blurTexture; { GrContext::AutoRenderTarget art(context, pathTexture->asRenderTarget()); GrContext::AutoClip ac(context, srcRect); context->clear(NULL, 0); GrPaint tempPaint; if (grp->isAntiAlias()) { tempPaint.setAntiAlias(true); // AA uses the "coverage" stages on GrDrawTarget. Coverage with a dst // blend coeff of zero requires dual source blending support in order // to properly blend partially covered pixels. This means the AA // code path may not be taken. So we use a dst blend coeff of ISA. We // could special case AA draws to a dst surface with known alpha=0 to // use a zero dst coeff when dual source blending isn't available.f tempPaint.setBlendFunc(kOne_GrBlendCoeff, kISC_GrBlendCoeff); } GrContext::AutoMatrix am; // Draw hard shadow to pathTexture with path top-left at origin using tempPaint. SkMatrix translate; translate.setTranslate(offset.fX, offset.fY); am.set(context, translate); context->drawPath(tempPaint, devPath, stroke); // If we're doing a normal blur, we can clobber the pathTexture in the // gaussianBlur. Otherwise, we need to save it for later compositing. bool isNormalBlur = blurType == SkMaskFilter::kNormal_BlurType; blurTexture.reset(context->gaussianBlur(pathTexture, isNormalBlur, srcRect, sigma, sigma)); if (NULL == blurTexture) { return false; } if (!isNormalBlur) { context->setIdentityMatrix(); GrPaint paint; SkMatrix matrix; matrix.setIDiv(pathTexture->width(), pathTexture->height()); // Blend pathTexture over blurTexture. context->setRenderTarget(blurTexture->asRenderTarget()); paint.colorStage(0)->setEffect( GrSimpleTextureEffect::Create(pathTexture, matrix))->unref(); if (SkMaskFilter::kInner_BlurType == blurType) { // inner: dst = dst * src paint.setBlendFunc(kDC_GrBlendCoeff, kZero_GrBlendCoeff); } else if (SkMaskFilter::kSolid_BlurType == blurType) { // solid: dst = src + dst - src * dst // = (1 - dst) * src + 1 * dst paint.setBlendFunc(kIDC_GrBlendCoeff, kOne_GrBlendCoeff); } else if (SkMaskFilter::kOuter_BlurType == blurType) { // outer: dst = dst * (1 - src) // = 0 * src + (1 - src) * dst paint.setBlendFunc(kZero_GrBlendCoeff, kISC_GrBlendCoeff); } context->drawRect(paint, srcRect); } } GrContext::AutoMatrix am; if (!am.setIdentity(context, grp)) { return false; } static const int MASK_IDX = GrPaint::kMaxCoverageStages - 1; // we assume the last mask index is available for use GrAssert(!grp->isCoverageStageEnabled(MASK_IDX)); SkMatrix matrix; matrix.setTranslate(-finalRect.fLeft, -finalRect.fTop); matrix.postIDiv(blurTexture->width(), blurTexture->height()); grp->coverageStage(MASK_IDX)->reset(); grp->coverageStage(MASK_IDX)->setEffect( GrSimpleTextureEffect::Create(blurTexture, matrix))->unref(); context->drawRect(*grp, finalRect); return true; } bool drawWithMaskFilter(GrContext* context, const SkPath& devPath, SkMaskFilter* filter, const SkRegion& clip, SkBounder* bounder, GrPaint* grp, SkPaint::Style style) { SkMask srcM, dstM; if (!SkDraw::DrawToMask(devPath, &clip.getBounds(), filter, &context->getMatrix(), &srcM, SkMask::kComputeBoundsAndRenderImage_CreateMode, style)) { return false; } SkAutoMaskFreeImage autoSrc(srcM.fImage); if (!filter->filterMask(&dstM, srcM, context->getMatrix(), NULL)) { return false; } // this will free-up dstM when we're done (allocated in filterMask()) SkAutoMaskFreeImage autoDst(dstM.fImage); if (clip.quickReject(dstM.fBounds)) { return false; } if (bounder && !bounder->doIRect(dstM.fBounds)) { return false; } // we now have a device-aligned 8bit mask in dstM, ready to be drawn using // the current clip (and identity matrix) and GrPaint settings GrContext::AutoMatrix am; am.setIdentity(context, grp); GrTextureDesc desc; desc.fWidth = dstM.fBounds.width(); desc.fHeight = dstM.fBounds.height(); desc.fConfig = kAlpha_8_GrPixelConfig; GrAutoScratchTexture ast(context, desc); GrTexture* texture = ast.texture(); if (NULL == texture) { return false; } texture->writePixels(0, 0, desc.fWidth, desc.fHeight, desc.fConfig, dstM.fImage, dstM.fRowBytes); static const int MASK_IDX = GrPaint::kMaxCoverageStages - 1; // we assume the last mask index is available for use GrAssert(!grp->isCoverageStageEnabled(MASK_IDX)); SkMatrix m; m.setTranslate(-dstM.fBounds.fLeft*SK_Scalar1, -dstM.fBounds.fTop*SK_Scalar1); m.postIDiv(texture->width(), texture->height()); grp->coverageStage(MASK_IDX)->setEffect(GrSimpleTextureEffect::Create(texture, m))->unref(); GrRect d; d.setLTRB(SkIntToScalar(dstM.fBounds.fLeft), SkIntToScalar(dstM.fBounds.fTop), SkIntToScalar(dstM.fBounds.fRight), SkIntToScalar(dstM.fBounds.fBottom)); context->drawRect(*grp, d); return true; } } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawPath(const SkDraw& draw, const SkPath& origSrcPath, const SkPaint& paint, const SkMatrix* prePathMatrix, bool pathIsMutable) { CHECK_FOR_NODRAW_ANNOTATION(paint); CHECK_SHOULD_DRAW(draw, false); GrPaint grPaint; if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { return; } // can we cheat, and treat a thin stroke as a hairline w/ coverage // if we can, we draw lots faster (raster device does this same test) SkScalar hairlineCoverage; bool doHairLine = SkDrawTreatAsHairline(paint, fContext->getMatrix(), &hairlineCoverage); if (doHairLine) { grPaint.setCoverage(SkScalarRoundToInt(hairlineCoverage * grPaint.getCoverage())); } // If we have a prematrix, apply it to the path, optimizing for the case // where the original path can in fact be modified in place (even though // its parameter type is const). SkPath* pathPtr = const_cast(&origSrcPath); SkPath tmpPath, effectPath; if (prePathMatrix) { SkPath* result = pathPtr; if (!pathIsMutable) { result = &tmpPath; pathIsMutable = true; } // should I push prePathMatrix on our MV stack temporarily, instead // of applying it here? See SkDraw.cpp pathPtr->transform(*prePathMatrix, result); pathPtr = result; } // at this point we're done with prePathMatrix SkDEBUGCODE(prePathMatrix = (const SkMatrix*)0x50FF8001;) SkStrokeRec stroke(paint); SkPathEffect* pathEffect = paint.getPathEffect(); const SkRect* cullRect = NULL; // TODO: what is our bounds? if (pathEffect && pathEffect->filterPath(&effectPath, *pathPtr, &stroke, cullRect)) { pathPtr = &effectPath; } if (!pathEffect && doHairLine) { stroke.setHairlineStyle(); } if (paint.getMaskFilter()) { if (!stroke.isHairlineStyle()) { if (stroke.applyToPath(&tmpPath, *pathPtr)) { pathPtr = &tmpPath; stroke.setFillStyle(); } } // avoid possibly allocating a new path in transform if we can SkPath* devPathPtr = pathIsMutable ? pathPtr : &tmpPath; // transform the path into device space pathPtr->transform(fContext->getMatrix(), devPathPtr); if (!drawWithGPUMaskFilter(fContext, *devPathPtr, stroke, paint.getMaskFilter(), *draw.fClip, draw.fBounder, &grPaint)) { SkPaint::Style style = stroke.isHairlineStyle() ? SkPaint::kStroke_Style : SkPaint::kFill_Style; drawWithMaskFilter(fContext, *devPathPtr, paint.getMaskFilter(), *draw.fClip, draw.fBounder, &grPaint, style); } return; } fContext->drawPath(grPaint, *pathPtr, stroke); } namespace { inline int get_tile_count(int l, int t, int r, int b, int tileSize) { int tilesX = (r / tileSize) - (l / tileSize) + 1; int tilesY = (b / tileSize) - (t / tileSize) + 1; return tilesX * tilesY; } inline int determine_tile_size(const SkBitmap& bitmap, const SkRect& src, int maxTextureSize) { static const int kSmallTileSize = 1 << 10; if (maxTextureSize <= kSmallTileSize) { return maxTextureSize; } size_t maxTexTotalTileSize; size_t smallTotalTileSize; SkIRect iSrc; src.roundOut(&iSrc); maxTexTotalTileSize = get_tile_count(iSrc.fLeft, iSrc.fTop, iSrc.fRight, iSrc.fBottom, maxTextureSize); smallTotalTileSize = get_tile_count(iSrc.fLeft, iSrc.fTop, iSrc.fRight, iSrc.fBottom, kSmallTileSize); maxTexTotalTileSize *= maxTextureSize * maxTextureSize; smallTotalTileSize *= kSmallTileSize * kSmallTileSize; if (maxTexTotalTileSize > 2 * smallTotalTileSize) { return kSmallTileSize; } else { return maxTextureSize; } } } bool SkGpuDevice::shouldTileBitmap(const SkBitmap& bitmap, const GrTextureParams& params, const SkRect* srcRectPtr) const { // if bitmap is explictly texture backed then just use the texture if (NULL != bitmap.getTexture()) { return false; } // if it's larger than the max texture size, then we have no choice but // tiling const int maxTextureSize = fContext->getMaxTextureSize(); if (bitmap.width() > maxTextureSize || bitmap.height() > maxTextureSize) { return true; } // if we are going to have to draw the whole thing, then don't tile if (NULL == srcRectPtr) { return false; } // if the entire texture is already in our cache then no reason to tile it if (GrIsBitmapInCache(fContext, bitmap, ¶ms)) { return false; } // At this point we know we could do the draw by uploading the entire bitmap // as a texture. However, if the texture would be large compared to the // cache size and we don't require most of it for this draw then tile to // reduce the amount of upload and cache spill. // assumption here is that sw bitmap size is a good proxy for its size as // a texture size_t bmpSize = bitmap.getSize(); size_t cacheSize; fContext->getTextureCacheLimits(NULL, &cacheSize); if (bmpSize < cacheSize / 2) { return false; } SkScalar fracUsed = SkScalarMul(srcRectPtr->width() / bitmap.width(), srcRectPtr->height() / bitmap.height()); if (fracUsed <= SK_ScalarHalf) { return true; } else { return false; } } void SkGpuDevice::drawBitmap(const SkDraw& draw, const SkBitmap& bitmap, const SkIRect* srcRectPtr, const SkMatrix& m, const SkPaint& paint) { SkRect tmp; SkRect* tmpPtr = NULL; // convert from SkIRect to SkRect if (NULL != srcRectPtr) { tmp.set(*srcRectPtr); tmpPtr = &tmp; } // We cannot call drawBitmapRect here since 'm' could be anything this->drawBitmapCommon(draw, bitmap, tmpPtr, m, paint); } void SkGpuDevice::drawBitmapCommon(const SkDraw& draw, const SkBitmap& bitmap, const SkRect* srcRectPtr, const SkMatrix& m, const SkPaint& paint) { CHECK_SHOULD_DRAW(draw, false); SkRect srcRect; if (NULL == srcRectPtr) { srcRect.set(0, 0, SkIntToScalar(bitmap.width()), SkIntToScalar(bitmap.height())); } else { srcRect = *srcRectPtr; } if (paint.getMaskFilter()){ // Convert the bitmap to a shader so that the rect can be drawn // through drawRect, which supports mask filters. SkMatrix newM(m); SkBitmap tmp; // subset of bitmap, if necessary const SkBitmap* bitmapPtr = &bitmap; if (NULL != srcRectPtr) { SkIRect iSrc; srcRect.roundOut(&iSrc); if (!bitmap.extractSubset(&tmp, iSrc)) { return; // extraction failed } bitmapPtr = &tmp; srcRect.offset(SkIntToScalar(-iSrc.fLeft), SkIntToScalar(-iSrc.fTop)); // The source rect has changed so update the matrix newM.preTranslate(SkIntToScalar(iSrc.fLeft), SkIntToScalar(iSrc.fTop)); } SkPaint paintWithTexture(paint); paintWithTexture.setShader(SkShader::CreateBitmapShader(*bitmapPtr, SkShader::kClamp_TileMode, SkShader::kClamp_TileMode))->unref(); // Transform 'newM' needs to be concatenated to the current matrix, // rather than transforming the primitive directly, so that 'newM' will // also affect the behavior of the mask filter. SkMatrix drawMatrix; drawMatrix.setConcat(fContext->getMatrix(), newM); SkDraw transformedDraw(draw); transformedDraw.fMatrix = &drawMatrix; this->drawRect(transformedDraw, srcRect, paintWithTexture); return; } GrPaint grPaint; bool alphaOnly = !(SkBitmap::kA8_Config == bitmap.config()); if (!skPaint2GrPaintNoShader(this, paint, alphaOnly, false, &grPaint)) { return; } GrTextureParams params; params.setBilerp(paint.isFilterBitmap()); if (!this->shouldTileBitmap(bitmap, params, srcRectPtr)) { // take the simple case this->internalDrawBitmap(bitmap, srcRect, m, params, &grPaint); } else { this->drawTiledBitmap(bitmap, srcRect, m, params, &grPaint); } } // Break 'bitmap' into several tiles to draw it since it has already // been determined to be too large to fit in VRAM void SkGpuDevice::drawTiledBitmap(const SkBitmap& bitmap, const SkRect& srcRect, const SkMatrix& m, const GrTextureParams& params, GrPaint* grPaint) { const int maxTextureSize = fContext->getMaxTextureSize(); int tileSize = determine_tile_size(bitmap, srcRect, maxTextureSize); // compute clip bounds in local coordinates SkRect clipRect; { const GrRenderTarget* rt = fContext->getRenderTarget(); clipRect.setWH(SkIntToScalar(rt->width()), SkIntToScalar(rt->height())); if (!fContext->getClip()->fClipStack->intersectRectWithClip(&clipRect)) { return; } SkMatrix matrix, inverse; matrix.setConcat(fContext->getMatrix(), m); if (!matrix.invert(&inverse)) { return; } inverse.mapRect(&clipRect); } int nx = bitmap.width() / tileSize; int ny = bitmap.height() / tileSize; for (int x = 0; x <= nx; x++) { for (int y = 0; y <= ny; y++) { SkRect tileR; tileR.set(SkIntToScalar(x * tileSize), SkIntToScalar(y * tileSize), SkIntToScalar((x + 1) * tileSize), SkIntToScalar((y + 1) * tileSize)); if (!SkRect::Intersects(tileR, clipRect)) { continue; } if (!tileR.intersect(srcRect)) { continue; } SkBitmap tmpB; SkIRect iTileR; tileR.roundOut(&iTileR); if (bitmap.extractSubset(&tmpB, iTileR)) { // now offset it to make it "local" to our tmp bitmap tileR.offset(SkIntToScalar(-iTileR.fLeft), SkIntToScalar(-iTileR.fTop)); SkMatrix tmpM(m); tmpM.preTranslate(SkIntToScalar(iTileR.fLeft), SkIntToScalar(iTileR.fTop)); this->internalDrawBitmap(tmpB, tileR, tmpM, params, grPaint); } } } } namespace { bool hasAlignedSamples(const SkRect& srcRect, const SkRect& transformedRect) { // detect pixel disalignment if (SkScalarAbs(SkScalarRoundToScalar(transformedRect.left()) - transformedRect.left()) < COLOR_BLEED_TOLERANCE && SkScalarAbs(SkScalarRoundToScalar(transformedRect.top()) - transformedRect.top()) < COLOR_BLEED_TOLERANCE && SkScalarAbs(transformedRect.width() - srcRect.width()) < COLOR_BLEED_TOLERANCE && SkScalarAbs(transformedRect.height() - srcRect.height()) < COLOR_BLEED_TOLERANCE) { return true; } return false; } bool mayColorBleed(const SkRect& srcRect, const SkRect& transformedRect, const SkMatrix& m) { // Only gets called if hasAlignedSamples returned false. // So we can assume that sampling is axis aligned but not texel aligned. GrAssert(!hasAlignedSamples(srcRect, transformedRect)); SkRect innerSrcRect(srcRect), innerTransformedRect, outerTransformedRect(transformedRect); innerSrcRect.inset(SK_ScalarHalf, SK_ScalarHalf); m.mapRect(&innerTransformedRect, innerSrcRect); // The gap between outerTransformedRect and innerTransformedRect // represents the projection of the source border area, which is // problematic for color bleeding. We must check whether any // destination pixels sample the border area. outerTransformedRect.inset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE); innerTransformedRect.outset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE); SkIRect outer, inner; outerTransformedRect.round(&outer); innerTransformedRect.round(&inner); // If the inner and outer rects round to the same result, it means the // border does not overlap any pixel centers. Yay! return inner != outer; } } // unnamed namespace /* * This is called by drawBitmap(), which has to handle images that may be too * large to be represented by a single texture. * * internalDrawBitmap assumes that the specified bitmap will fit in a texture * and that non-texture portion of the GrPaint has already been setup. */ void SkGpuDevice::internalDrawBitmap(const SkBitmap& bitmap, const SkRect& srcRect, const SkMatrix& m, const GrTextureParams& params, GrPaint* grPaint) { SkASSERT(bitmap.width() <= fContext->getMaxTextureSize() && bitmap.height() <= fContext->getMaxTextureSize()); GrTexture* texture; SkAutoCachedTexture act(this, bitmap, ¶ms, &texture); if (NULL == texture) { return; } GrRect dstRect(srcRect); GrRect paintRect; SkScalar wInv = SkScalarInvert(SkIntToScalar(bitmap.width())); SkScalar hInv = SkScalarInvert(SkIntToScalar(bitmap.height())); paintRect.setLTRB(SkScalarMul(srcRect.fLeft, wInv), SkScalarMul(srcRect.fTop, hInv), SkScalarMul(srcRect.fRight, wInv), SkScalarMul(srcRect.fBottom, hInv)); bool needsTextureDomain = false; if (params.isBilerp()) { // Need texture domain if drawing a sub rect. needsTextureDomain = srcRect.width() < bitmap.width() || srcRect.height() < bitmap.height(); if (m.rectStaysRect() && fContext->getMatrix().rectStaysRect()) { // sampling is axis-aligned GrRect transformedRect; SkMatrix srcToDeviceMatrix(m); srcToDeviceMatrix.postConcat(fContext->getMatrix()); srcToDeviceMatrix.mapRect(&transformedRect, srcRect); if (hasAlignedSamples(srcRect, transformedRect)) { // We could also turn off filtering here (but we already did a cache lookup with // params). needsTextureDomain = false; } else { needsTextureDomain = needsTextureDomain && mayColorBleed(srcRect, transformedRect, m); } } } GrRect textureDomain = GrRect::MakeEmpty(); SkAutoTUnref effect; if (needsTextureDomain) { // Use a constrained texture domain to avoid color bleeding SkScalar left, top, right, bottom; if (srcRect.width() > SK_Scalar1) { SkScalar border = SK_ScalarHalf / bitmap.width(); left = paintRect.left() + border; right = paintRect.right() - border; } else { left = right = SkScalarHalf(paintRect.left() + paintRect.right()); } if (srcRect.height() > SK_Scalar1) { SkScalar border = SK_ScalarHalf / bitmap.height(); top = paintRect.top() + border; bottom = paintRect.bottom() - border; } else { top = bottom = SkScalarHalf(paintRect.top() + paintRect.bottom()); } textureDomain.setLTRB(left, top, right, bottom); effect.reset(GrTextureDomainEffect::Create(texture, SkMatrix::I(), textureDomain, GrTextureDomainEffect::kClamp_WrapMode, params.isBilerp())); } else { effect.reset(GrSimpleTextureEffect::Create(texture, SkMatrix::I(), params)); } grPaint->colorStage(kBitmapEffectIdx)->setEffect(effect); fContext->drawRectToRect(*grPaint, dstRect, paintRect, &m); } static SkBitmap wrap_texture(GrTexture* texture) { SkBitmap result; bool dummy; SkBitmap::Config config = grConfig2skConfig(texture->config(), &dummy); result.setConfig(config, texture->width(), texture->height()); result.setPixelRef(SkNEW_ARGS(SkGrPixelRef, (texture)))->unref(); return result; } static bool filter_texture(SkDevice* device, GrContext* context, GrTexture* texture, SkImageFilter* filter, int w, int h, SkBitmap* result) { GrAssert(filter); SkDeviceImageFilterProxy proxy(device); if (filter->canFilterImageGPU()) { // Save the render target and set it to NULL, so we don't accidentally draw to it in the // filter. Also set the clip wide open and the matrix to identity. GrContext::AutoWideOpenIdentityDraw awo(context, NULL); return filter->filterImageGPU(&proxy, wrap_texture(texture), result); } else { return false; } } void SkGpuDevice::drawSprite(const SkDraw& draw, const SkBitmap& bitmap, int left, int top, const SkPaint& paint) { // drawSprite is defined to be in device coords. CHECK_SHOULD_DRAW(draw, true); SkAutoLockPixels alp(bitmap, !bitmap.getTexture()); if (!bitmap.getTexture() && !bitmap.readyToDraw()) { return; } int w = bitmap.width(); int h = bitmap.height(); GrPaint grPaint; if(!skPaint2GrPaintNoShader(this, paint, true, false, &grPaint)) { return; } GrEffectStage* stage = grPaint.colorStage(kBitmapEffectIdx); GrTexture* texture; stage->reset(); // draw sprite uses the default texture params SkAutoCachedTexture act(this, bitmap, NULL, &texture); grPaint.colorStage(kBitmapEffectIdx)->setEffect( GrSimpleTextureEffect::Create(texture, SkMatrix::I()))->unref(); SkImageFilter* filter = paint.getImageFilter(); if (NULL != filter) { SkBitmap filterBitmap; if (filter_texture(this, fContext, texture, filter, w, h, &filterBitmap)) { grPaint.colorStage(kBitmapEffectIdx)->setEffect( GrSimpleTextureEffect::Create((GrTexture*) filterBitmap.getTexture(), SkMatrix::I()))->unref(); texture = (GrTexture*) filterBitmap.getTexture(); w = filterBitmap.width(); h = filterBitmap.height(); } } fContext->drawRectToRect(grPaint, GrRect::MakeXYWH(SkIntToScalar(left), SkIntToScalar(top), SkIntToScalar(w), SkIntToScalar(h)), GrRect::MakeWH(SK_Scalar1 * w / texture->width(), SK_Scalar1 * h / texture->height())); } void SkGpuDevice::drawBitmapRect(const SkDraw& draw, const SkBitmap& bitmap, const SkRect* src, const SkRect& dst, const SkPaint& paint) { SkMatrix matrix; SkRect bitmapBounds, tmpSrc; bitmapBounds.set(0, 0, SkIntToScalar(bitmap.width()), SkIntToScalar(bitmap.height())); // Compute matrix from the two rectangles if (NULL != src) { tmpSrc = *src; } else { tmpSrc = bitmapBounds; } matrix.setRectToRect(tmpSrc, dst, SkMatrix::kFill_ScaleToFit); // clip the tmpSrc to the bounds of the bitmap. No check needed if src==null. if (NULL != src) { if (!bitmapBounds.contains(tmpSrc)) { if (!tmpSrc.intersect(bitmapBounds)) { return; // nothing to draw } } } this->drawBitmapCommon(draw, bitmap, &tmpSrc, matrix, paint); } void SkGpuDevice::drawDevice(const SkDraw& draw, SkDevice* device, int x, int y, const SkPaint& paint) { // clear of the source device must occur before CHECK_SHOULD_DRAW SkGpuDevice* dev = static_cast(device); if (dev->fNeedClear) { // TODO: could check here whether we really need to draw at all dev->clear(0x0); } // drawDevice is defined to be in device coords. CHECK_SHOULD_DRAW(draw, true); GrPaint grPaint; grPaint.colorStage(kBitmapEffectIdx)->reset(); if (!dev->bindDeviceAsTexture(&grPaint) || !skPaint2GrPaintNoShader(this, paint, true, false, &grPaint)) { return; } GrTexture* devTex = (*grPaint.getColorStage(kBitmapEffectIdx).getEffect())->texture(0); SkASSERT(NULL != devTex); const SkBitmap& bm = dev->accessBitmap(false); int w = bm.width(); int h = bm.height(); SkImageFilter* filter = paint.getImageFilter(); if (NULL != filter) { SkBitmap filterBitmap; if (filter_texture(this, fContext, devTex, filter, w, h, &filterBitmap)) { grPaint.colorStage(kBitmapEffectIdx)->setEffect( GrSimpleTextureEffect::Create((GrTexture*) filterBitmap.getTexture(), SkMatrix::I()))->unref(); devTex = (GrTexture*) filterBitmap.getTexture(); w = filterBitmap.width(); h = filterBitmap.height(); } } GrRect dstRect = GrRect::MakeXYWH(SkIntToScalar(x), SkIntToScalar(y), SkIntToScalar(w), SkIntToScalar(h)); // The device being drawn may not fill up its texture (saveLayer uses // the approximate ). GrRect srcRect = GrRect::MakeWH(SK_Scalar1 * w / devTex->width(), SK_Scalar1 * h / devTex->height()); fContext->drawRectToRect(grPaint, dstRect, srcRect); } bool SkGpuDevice::canHandleImageFilter(SkImageFilter* filter) { return filter->canFilterImageGPU(); } bool SkGpuDevice::filterImage(SkImageFilter* filter, const SkBitmap& src, const SkMatrix& ctm, SkBitmap* result, SkIPoint* offset) { // want explicitly our impl, so guard against a subclass of us overriding it if (!this->SkGpuDevice::canHandleImageFilter(filter)) { return false; } SkAutoLockPixels alp(src, !src.getTexture()); if (!src.getTexture() && !src.readyToDraw()) { return false; } GrPaint paint; GrTexture* texture; // We assume here that the filter will not attempt to tile the src. Otherwise, this cache lookup // must be pushed upstack. SkAutoCachedTexture act(this, src, NULL, &texture); return filter_texture(this, fContext, texture, filter, src.width(), src.height(), result); } /////////////////////////////////////////////////////////////////////////////// // must be in SkCanvas::VertexMode order static const GrPrimitiveType gVertexMode2PrimitiveType[] = { kTriangles_GrPrimitiveType, kTriangleStrip_GrPrimitiveType, kTriangleFan_GrPrimitiveType, }; void SkGpuDevice::drawVertices(const SkDraw& draw, SkCanvas::VertexMode vmode, int vertexCount, const SkPoint vertices[], const SkPoint texs[], const SkColor colors[], SkXfermode* xmode, const uint16_t indices[], int indexCount, const SkPaint& paint) { CHECK_SHOULD_DRAW(draw, false); GrPaint grPaint; // we ignore the shader if texs is null. if (NULL == texs) { if (!skPaint2GrPaintNoShader(this, paint, false, NULL == colors, &grPaint)) { return; } } else { if (!skPaint2GrPaintShader(this, paint, NULL == colors, &grPaint)) { return; } } if (NULL != xmode && NULL != texs && NULL != colors) { if (!SkXfermode::IsMode(xmode, SkXfermode::kModulate_Mode)) { SkDebugf("Unsupported vertex-color/texture xfer mode.\n"); #if 0 return #endif } } SkAutoSTMalloc<128, GrColor> convertedColors(0); if (NULL != colors) { // need to convert byte order and from non-PM to PM convertedColors.reset(vertexCount); for (int i = 0; i < vertexCount; ++i) { convertedColors[i] = SkColor2GrColor(colors[i]); } colors = convertedColors.get(); } fContext->drawVertices(grPaint, gVertexMode2PrimitiveType[vmode], vertexCount, (GrPoint*) vertices, (GrPoint*) texs, colors, indices, indexCount); } /////////////////////////////////////////////////////////////////////////////// static void GlyphCacheAuxProc(void* data) { GrFontScaler* scaler = (GrFontScaler*)data; SkSafeUnref(scaler); } static GrFontScaler* get_gr_font_scaler(SkGlyphCache* cache) { void* auxData; GrFontScaler* scaler = NULL; if (cache->getAuxProcData(GlyphCacheAuxProc, &auxData)) { scaler = (GrFontScaler*)auxData; } if (NULL == scaler) { scaler = SkNEW_ARGS(SkGrFontScaler, (cache)); cache->setAuxProc(GlyphCacheAuxProc, scaler); } return scaler; } static void SkGPU_Draw1Glyph(const SkDraw1Glyph& state, SkFixed fx, SkFixed fy, const SkGlyph& glyph) { SkASSERT(glyph.fWidth > 0 && glyph.fHeight > 0); GrSkDrawProcs* procs = static_cast(state.fDraw->fProcs); if (NULL == procs->fFontScaler) { procs->fFontScaler = get_gr_font_scaler(state.fCache); } procs->fTextContext->drawPackedGlyph(GrGlyph::Pack(glyph.getGlyphID(), glyph.getSubXFixed(), glyph.getSubYFixed()), SkFixedFloorToFixed(fx), SkFixedFloorToFixed(fy), procs->fFontScaler); } SkDrawProcs* SkGpuDevice::initDrawForText(GrTextContext* context) { // deferred allocation if (NULL == fDrawProcs) { fDrawProcs = SkNEW(GrSkDrawProcs); fDrawProcs->fD1GProc = SkGPU_Draw1Glyph; fDrawProcs->fContext = fContext; } // init our (and GL's) state fDrawProcs->fTextContext = context; fDrawProcs->fFontScaler = NULL; return fDrawProcs; } void SkGpuDevice::drawText(const SkDraw& draw, const void* text, size_t byteLength, SkScalar x, SkScalar y, const SkPaint& paint) { CHECK_SHOULD_DRAW(draw, false); if (fContext->getMatrix().hasPerspective()) { // this guy will just call our drawPath() draw.drawText((const char*)text, byteLength, x, y, paint); } else { SkDraw myDraw(draw); GrPaint grPaint; if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { return; } GrTextContext context(fContext, grPaint); myDraw.fProcs = this->initDrawForText(&context); this->INHERITED::drawText(myDraw, text, byteLength, x, y, paint); } } void SkGpuDevice::drawPosText(const SkDraw& draw, const void* text, size_t byteLength, const SkScalar pos[], SkScalar constY, int scalarsPerPos, const SkPaint& paint) { CHECK_SHOULD_DRAW(draw, false); if (fContext->getMatrix().hasPerspective()) { // this guy will just call our drawPath() draw.drawPosText((const char*)text, byteLength, pos, constY, scalarsPerPos, paint); } else { SkDraw myDraw(draw); GrPaint grPaint; if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { return; } GrTextContext context(fContext, grPaint); myDraw.fProcs = this->initDrawForText(&context); this->INHERITED::drawPosText(myDraw, text, byteLength, pos, constY, scalarsPerPos, paint); } } void SkGpuDevice::drawTextOnPath(const SkDraw& draw, const void* text, size_t len, const SkPath& path, const SkMatrix* m, const SkPaint& paint) { CHECK_SHOULD_DRAW(draw, false); SkASSERT(draw.fDevice == this); draw.drawTextOnPath((const char*)text, len, path, m, paint); } /////////////////////////////////////////////////////////////////////////////// bool SkGpuDevice::filterTextFlags(const SkPaint& paint, TextFlags* flags) { if (!paint.isLCDRenderText()) { // we're cool with the paint as is return false; } if (paint.getShader() || paint.getXfermode() || // unless its srcover paint.getMaskFilter() || paint.getRasterizer() || paint.getColorFilter() || paint.getPathEffect() || paint.isFakeBoldText() || paint.getStyle() != SkPaint::kFill_Style) { // turn off lcd flags->fFlags = paint.getFlags() & ~SkPaint::kLCDRenderText_Flag; flags->fHinting = paint.getHinting(); return true; } // we're cool with the paint as is return false; } void SkGpuDevice::flush() { DO_DEFERRED_CLEAR(); fContext->resolveRenderTarget(fRenderTarget); } /////////////////////////////////////////////////////////////////////////////// SkDevice* SkGpuDevice::onCreateCompatibleDevice(SkBitmap::Config config, int width, int height, bool isOpaque, Usage usage) { GrTextureDesc desc; desc.fConfig = fRenderTarget->config(); desc.fFlags = kRenderTarget_GrTextureFlagBit; desc.fWidth = width; desc.fHeight = height; desc.fSampleCnt = fRenderTarget->numSamples(); SkAutoTUnref texture; // Skia's convention is to only clear a device if it is non-opaque. bool needClear = !isOpaque; #if CACHE_COMPATIBLE_DEVICE_TEXTURES // layers are never draw in repeat modes, so we can request an approx // match and ignore any padding. const GrContext::ScratchTexMatch match = (kSaveLayer_Usage == usage) ? GrContext::kApprox_ScratchTexMatch : GrContext::kExact_ScratchTexMatch; texture.reset(fContext->lockAndRefScratchTexture(desc, match)); #else texture.reset(fContext->createUncachedTexture(desc, NULL, 0)); #endif if (NULL != texture.get()) { return SkNEW_ARGS(SkGpuDevice,(fContext, texture, needClear)); } else { GrPrintf("---- failed to create compatible device texture [%d %d]\n", width, height); return NULL; } } SkGpuDevice::SkGpuDevice(GrContext* context, GrTexture* texture, bool needClear) : SkDevice(make_bitmap(context, texture->asRenderTarget())) { GrAssert(texture && texture->asRenderTarget()); // This constructor is called from onCreateCompatibleDevice. It has locked the RT in the texture // cache. We pass true for the third argument so that it will get unlocked. this->initFromRenderTarget(context, texture->asRenderTarget(), true); fNeedClear = needClear; }