/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkGpuDevice.h" #include "GrBlurUtils.h" #include "GrContext.h" #include "SkDraw.h" #include "GrGpu.h" #include "GrGpuResourcePriv.h" #include "GrImageIDTextureAdjuster.h" #include "GrLayerHoister.h" #include "GrRecordReplaceDraw.h" #include "GrStyle.h" #include "GrTracing.h" #include "SkCanvasPriv.h" #include "SkErrorInternals.h" #include "SkGlyphCache.h" #include "SkGrTexturePixelRef.h" #include "SkGr.h" #include "SkGrPriv.h" #include "SkImage_Base.h" #include "SkImageCacherator.h" #include "SkImageFilter.h" #include "SkImageFilterCache.h" #include "SkLayerInfo.h" #include "SkMaskFilter.h" #include "SkNinePatchIter.h" #include "SkPathEffect.h" #include "SkPicture.h" #include "SkPictureData.h" #include "SkRasterClip.h" #include "SkRRect.h" #include "SkRecord.h" #include "SkStroke.h" #include "SkSurface.h" #include "SkSurface_Gpu.h" #include "SkTLazy.h" #include "SkUtils.h" #include "SkVertState.h" #include "SkXfermode.h" #include "batches/GrRectBatchFactory.h" #include "effects/GrBicubicEffect.h" #include "effects/GrDashingEffect.h" #include "effects/GrSimpleTextureEffect.h" #include "effects/GrTextureDomain.h" #include "text/GrTextUtils.h" #if SK_SUPPORT_GPU #define ASSERT_SINGLE_OWNER \ SkDEBUGCODE(GrSingleOwner::AutoEnforce debug_SingleOwner(fContext->debugSingleOwner());) enum { kDefaultImageFilterCacheSize = 32 * 1024 * 1024 }; #if 0 extern bool (*gShouldDrawProc)(); #define CHECK_SHOULD_DRAW(draw) \ do { \ if (gShouldDrawProc && !gShouldDrawProc()) return; \ this->prepareDraw(draw); \ } while (0) #else #define CHECK_SHOULD_DRAW(draw) this->prepareDraw(draw) #endif /////////////////////////////////////////////////////////////////////////////// // Helper for turning a bitmap into a texture. If the bitmap is GrTexture backed this // just accesses the backing GrTexture. Otherwise, it creates a cached texture // representation and releases it in the destructor. class AutoBitmapTexture : public SkNoncopyable { public: AutoBitmapTexture() {} AutoBitmapTexture(GrContext* context, const SkBitmap& bitmap, const GrTextureParams& params, SkSourceGammaTreatment gammaTreatment, GrTexture** texture) { SkASSERT(texture); *texture = this->set(context, bitmap, params, gammaTreatment); } GrTexture* set(GrContext* context, const SkBitmap& bitmap, const GrTextureParams& params, SkSourceGammaTreatment gammaTreatment) { // Either get the texture directly from the bitmap, or else use the cache and // remember to unref it. if (GrTexture* bmpTexture = bitmap.getTexture()) { fTexture.reset(nullptr); return bmpTexture; } else { fTexture.reset(GrRefCachedBitmapTexture(context, bitmap, params, gammaTreatment)); return fTexture.get(); } } private: SkAutoTUnref fTexture; }; /////////////////////////////////////////////////////////////////////////////// /** Checks that the alpha type is legal and gets constructor flags. Returns false if device creation should fail. */ bool SkGpuDevice::CheckAlphaTypeAndGetFlags( const SkImageInfo* info, SkGpuDevice::InitContents init, unsigned* flags) { *flags = 0; if (info) { switch (info->alphaType()) { case kPremul_SkAlphaType: break; case kOpaque_SkAlphaType: *flags |= SkGpuDevice::kIsOpaque_Flag; break; default: // If it is unpremul or unknown don't try to render return false; } } if (kClear_InitContents == init) { *flags |= kNeedClear_Flag; } return true; } sk_sp SkGpuDevice::Make(sk_sp rt, const SkSurfaceProps* props, InitContents init) { if (!rt || rt->wasDestroyed() || !rt->getContext()) { return nullptr; } unsigned flags; if (!CheckAlphaTypeAndGetFlags(nullptr, init, &flags)) { return nullptr; } const int width = rt->width(); const int height = rt->height(); GrContext* context = rt->getContext(); sk_sp drawContext(context->drawContext(std::move(rt), props)); return sk_sp(new SkGpuDevice(std::move(drawContext), width, height, flags)); } sk_sp SkGpuDevice::Make(sk_sp drawContext, int width, int height, InitContents init) { if (!drawContext || drawContext->wasAbandoned()) { return nullptr; } unsigned flags; if (!CheckAlphaTypeAndGetFlags(nullptr, init, &flags)) { return nullptr; } return sk_sp(new SkGpuDevice(std::move(drawContext), width, height, flags)); } sk_sp SkGpuDevice::Make(GrContext* context, SkBudgeted budgeted, const SkImageInfo& info, int sampleCount, const SkSurfaceProps* props, InitContents init) { unsigned flags; if (!CheckAlphaTypeAndGetFlags(&info, init, &flags)) { return nullptr; } sk_sp drawContext(CreateDrawContext(context, budgeted, info, sampleCount, props)); if (!drawContext) { return nullptr; } return sk_sp(new SkGpuDevice(std::move(drawContext), info.width(), info.height(), flags)); } SkGpuDevice::SkGpuDevice(sk_sp drawContext, int width, int height, unsigned flags) : INHERITED(drawContext->surfaceProps()) , fContext(SkRef(drawContext->accessRenderTarget()->getContext())) , fRenderTarget(drawContext->renderTarget()) , fDrawContext(std::move(drawContext)) { fOpaque = SkToBool(flags & kIsOpaque_Flag); SkAlphaType at = fOpaque ? kOpaque_SkAlphaType : kPremul_SkAlphaType; SkImageInfo info = fRenderTarget->surfacePriv().info(at).makeWH(width, height); SkPixelRef* pr = new SkGrPixelRef(info, fRenderTarget.get()); fLegacyBitmap.setInfo(info); fLegacyBitmap.setPixelRef(pr)->unref(); if (flags & kNeedClear_Flag) { this->clearAll(); } } sk_sp SkGpuDevice::CreateDrawContext(GrContext* context, SkBudgeted budgeted, const SkImageInfo& origInfo, int sampleCount, const SkSurfaceProps* surfaceProps) { if (kUnknown_SkColorType == origInfo.colorType() || origInfo.width() < 0 || origInfo.height() < 0) { return nullptr; } if (!context) { return nullptr; } SkColorType ct = origInfo.colorType(); SkAlphaType at = origInfo.alphaType(); SkColorProfileType pt = origInfo.profileType(); if (kRGB_565_SkColorType == ct || kGray_8_SkColorType == ct) { at = kOpaque_SkAlphaType; // force this setting } if (kOpaque_SkAlphaType != at) { at = kPremul_SkAlphaType; // force this setting } GrPixelConfig origConfig = SkImageInfo2GrPixelConfig(ct, at, pt, *context->caps()); if (!context->caps()->isConfigRenderable(origConfig, sampleCount > 0)) { // Fall back from whatever ct was to default of kRGBA or kBGRA which is aliased as kN32 ct = kN32_SkColorType; } GrPixelConfig config = SkImageInfo2GrPixelConfig(ct, at, pt, *context->caps()); return context->newDrawContext(SkBackingFit::kExact, // Why exact? origInfo.width(), origInfo.height(), config, sampleCount, kDefault_GrSurfaceOrigin, surfaceProps, budgeted); } // This method ensures that we always have a texture-backed "bitmap" when we finally // call through to the base impl so that the image filtering code will take the // gpu-specific paths. This mirrors SkCanvas::internalDrawDevice (the other // use of SkImageFilter::filterImage) in that the source and dest will have // homogenous backing (e.g., raster or gpu). void SkGpuDevice::drawSpriteWithFilter(const SkDraw& draw, const SkBitmap& bitmap, int x, int y, const SkPaint& paint) { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawSpriteWithFilter", fContext); if (fContext->abandoned()) { return; } if (bitmap.getTexture()) { INHERITED::drawSpriteWithFilter(draw, bitmap, x, y, paint); return; } SkAutoLockPixels alp(bitmap, !bitmap.getTexture()); if (!bitmap.getTexture() && !bitmap.readyToDraw()) { return; } GrTexture* texture; // draw sprite neither filters nor tiles. AutoBitmapTexture abt(fContext, bitmap, GrTextureParams::ClampNoFilter(), SkSourceGammaTreatment::kRespect, &texture); if (!texture) { return; } SkBitmap newBitmap; GrWrapTextureInBitmap(texture, texture->width(), texture->height(), bitmap.isOpaque(), &newBitmap); INHERITED::drawSpriteWithFilter(draw, newBitmap, x, y, paint); } /////////////////////////////////////////////////////////////////////////////// bool SkGpuDevice::onReadPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRowBytes, int x, int y) { ASSERT_SINGLE_OWNER // TODO: teach fRenderTarget to take ImageInfo directly to specify the src pixels GrPixelConfig config = SkImageInfo2GrPixelConfig(dstInfo, *fContext->caps()); if (kUnknown_GrPixelConfig == config) { return false; } uint32_t flags = 0; if (kUnpremul_SkAlphaType == dstInfo.alphaType()) { flags = GrContext::kUnpremul_PixelOpsFlag; } return fRenderTarget->readPixels(x, y, dstInfo.width(), dstInfo.height(), config, dstPixels, dstRowBytes, flags); } bool SkGpuDevice::onWritePixels(const SkImageInfo& info, const void* pixels, size_t rowBytes, int x, int y) { ASSERT_SINGLE_OWNER // TODO: teach fRenderTarget to take ImageInfo directly to specify the src pixels GrPixelConfig config = SkImageInfo2GrPixelConfig(info, *fContext->caps()); if (kUnknown_GrPixelConfig == config) { return false; } uint32_t flags = 0; if (kUnpremul_SkAlphaType == info.alphaType()) { flags = GrContext::kUnpremul_PixelOpsFlag; } fRenderTarget->writePixels(x, y, info.width(), info.height(), config, pixels, rowBytes, flags); // need to bump our genID for compatibility with clients that "know" we have a bitmap fLegacyBitmap.notifyPixelsChanged(); return true; } const SkBitmap& SkGpuDevice::onAccessBitmap() { ASSERT_SINGLE_OWNER return fLegacyBitmap; } bool SkGpuDevice::onAccessPixels(SkPixmap* pmap) { ASSERT_SINGLE_OWNER // For compatibility with clients the know we're backed w/ a bitmap, and want to inspect its // genID. When we can hide/remove that fact, we can eliminate this call to notify. // ... ugh. fLegacyBitmap.notifyPixelsChanged(); return false; } void SkGpuDevice::onAttachToCanvas(SkCanvas* canvas) { ASSERT_SINGLE_OWNER INHERITED::onAttachToCanvas(canvas); // Canvas promises that this ptr is valid until onDetachFromCanvas is called fClipStack.reset(SkRef(canvas->getClipStack())); } void SkGpuDevice::onDetachFromCanvas() { ASSERT_SINGLE_OWNER INHERITED::onDetachFromCanvas(); fClip.reset(); fClipStack.reset(nullptr); } // call this every draw call, to ensure that the context reflects our state, // and not the state from some other canvas/device void SkGpuDevice::prepareDraw(const SkDraw& draw) { ASSERT_SINGLE_OWNER SkASSERT(fClipStack.get()); SkASSERT(draw.fClipStack && draw.fClipStack == fClipStack); fClip.reset(fClipStack, &this->getOrigin()); } GrRenderTarget* SkGpuDevice::accessRenderTarget() { ASSERT_SINGLE_OWNER return fRenderTarget.get(); } GrDrawContext* SkGpuDevice::accessDrawContext() { ASSERT_SINGLE_OWNER return fDrawContext.get(); } void SkGpuDevice::clearAll() { ASSERT_SINGLE_OWNER GrColor color = 0; GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "clearAll", fContext); SkIRect rect = SkIRect::MakeWH(this->width(), this->height()); fDrawContext->clear(&rect, color, true); } void SkGpuDevice::replaceDrawContext(bool shouldRetainContent) { ASSERT_SINGLE_OWNER SkBudgeted budgeted = fRenderTarget->resourcePriv().isBudgeted(); sk_sp newDC(CreateDrawContext(this->context(), budgeted, this->imageInfo(), fDrawContext->numColorSamples(), &this->surfaceProps())); if (!newDC) { return; } if (shouldRetainContent) { if (fRenderTarget->wasDestroyed()) { return; } newDC->copySurface(fDrawContext->asTexture().get(), SkIRect::MakeWH(this->width(), this->height()), SkIPoint::Make(0, 0)); } SkASSERT(fDrawContext->accessRenderTarget() != newDC->accessRenderTarget()); fRenderTarget = newDC->renderTarget(); #ifdef SK_DEBUG SkImageInfo info = fRenderTarget->surfacePriv().info(fOpaque ? kOpaque_SkAlphaType : kPremul_SkAlphaType); SkASSERT(info == fLegacyBitmap.info()); #endif SkPixelRef* pr = new SkGrPixelRef(fLegacyBitmap.info(), fRenderTarget.get()); fLegacyBitmap.setPixelRef(pr)->unref(); fDrawContext = newDC; } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawPaint(const SkDraw& draw, const SkPaint& paint) { ASSERT_SINGLE_OWNER CHECK_SHOULD_DRAW(draw); GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawPaint", fContext); GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, this->surfaceProps().isGammaCorrect(), &grPaint)) { return; } fDrawContext->drawPaint(fClip, grPaint, *draw.fMatrix); } // must be in SkCanvas::PointMode order static const GrPrimitiveType gPointMode2PrimtiveType[] = { kPoints_GrPrimitiveType, kLines_GrPrimitiveType, kLineStrip_GrPrimitiveType }; // suppress antialiasing on axis-aligned integer-coordinate lines static bool needs_antialiasing(SkCanvas::PointMode mode, size_t count, const SkPoint pts[]) { if (mode == SkCanvas::PointMode::kPoints_PointMode) { return false; } if (count == 2) { // We do not antialias as long as the primary axis of the line is integer-aligned, even if // the other coordinates are not. This does mean the two end pixels of the line will be // sharp even when they shouldn't be, but turning antialiasing on (as things stand // currently) means that the line will turn into a two-pixel-wide blur. While obviously a // more complete fix is possible down the road, for the time being we accept the error on // the two end pixels as being the lesser of two evils. if (pts[0].fX == pts[1].fX) { return ((int) pts[0].fX) != pts[0].fX; } if (pts[0].fY == pts[1].fY) { return ((int) pts[0].fY) != pts[0].fY; } } return true; } void SkGpuDevice::drawPoints(const SkDraw& draw, SkCanvas::PointMode mode, size_t count, const SkPoint pts[], const SkPaint& paint) { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawPoints", fContext); CHECK_SHOULD_DRAW(draw); SkScalar width = paint.getStrokeWidth(); if (width < 0) { return; } if (paint.getPathEffect() && 2 == count && SkCanvas::kLines_PointMode == mode) { GrStyle style(paint, SkPaint::kStroke_Style); GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, this->surfaceProps().isGammaCorrect(), &grPaint)) { return; } SkPath path; path.setIsVolatile(true); path.moveTo(pts[0]); path.lineTo(pts[1]); fDrawContext->drawPath(fClip, grPaint, *draw.fMatrix, path, style); return; } // we only handle non-antialiased hairlines and paints without path effects or mask filters, // else we let the SkDraw call our drawPath() if (width > 0 || paint.getPathEffect() || paint.getMaskFilter() || (paint.isAntiAlias() && needs_antialiasing(mode, count, pts))) { draw.drawPoints(mode, count, pts, paint, true); return; } GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, this->surfaceProps().isGammaCorrect(), &grPaint)) { return; } fDrawContext->drawVertices(fClip, grPaint, *draw.fMatrix, gPointMode2PrimtiveType[mode], SkToS32(count), (SkPoint*)pts, nullptr, nullptr, nullptr, 0); } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawRect(const SkDraw& draw, const SkRect& rect, const SkPaint& paint) { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawRect", fContext); CHECK_SHOULD_DRAW(draw); bool doStroke = paint.getStyle() != SkPaint::kFill_Style; SkScalar width = paint.getStrokeWidth(); /* We have special code for hairline strokes, miter-strokes, bevel-stroke and fills. Anything else we just call our path code. */ bool usePath = doStroke && width > 0 && (paint.getStrokeJoin() == SkPaint::kRound_Join || (paint.getStrokeJoin() == SkPaint::kBevel_Join && rect.isEmpty())); // a few other reasons we might need to call drawPath... if (paint.getMaskFilter() || paint.getPathEffect() || paint.getStyle() == SkPaint::kStrokeAndFill_Style) { // we can't both stroke and fill rects usePath = true; } if (usePath) { SkPath path; path.setIsVolatile(true); path.addRect(rect); GrBlurUtils::drawPathWithMaskFilter(fContext, fDrawContext.get(), fClip, path, paint, *draw.fMatrix, nullptr, draw.fRC->getBounds(), true); return; } GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, this->surfaceProps().isGammaCorrect(), &grPaint)) { return; } GrStyle style(paint); fDrawContext->drawRect(fClip, grPaint, *draw.fMatrix, rect, &style); } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawRRect(const SkDraw& draw, const SkRRect& rect, const SkPaint& paint) { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawRRect", fContext); CHECK_SHOULD_DRAW(draw); GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, this->surfaceProps().isGammaCorrect(), &grPaint)) { return; } GrStyle style(paint); if (paint.getMaskFilter()) { // try to hit the fast path for drawing filtered round rects SkRRect devRRect; if (rect.transform(*draw.fMatrix, &devRRect)) { if (devRRect.allCornersCircular()) { SkRect maskRect; if (paint.getMaskFilter()->canFilterMaskGPU(devRRect, draw.fRC->getBounds(), *draw.fMatrix, &maskRect)) { SkIRect finalIRect; maskRect.roundOut(&finalIRect); if (draw.fRC->quickReject(finalIRect)) { // clipped out return; } if (paint.getMaskFilter()->directFilterRRectMaskGPU(fContext->textureProvider(), fDrawContext.get(), &grPaint, fClip, *draw.fMatrix, style.strokeRec(), devRRect)) { return; } } } } } if (paint.getMaskFilter() || style.pathEffect()) { // The only mask filter the native rrect drawing code could've handle was taken // care of above. // A path effect will presumably transform this rrect into something else. SkPath path; path.setIsVolatile(true); path.addRRect(rect); GrBlurUtils::drawPathWithMaskFilter(fContext, fDrawContext.get(), fClip, path, paint, *draw.fMatrix, nullptr, draw.fRC->getBounds(), true); return; } SkASSERT(!style.pathEffect()); fDrawContext->drawRRect(fClip, grPaint, *draw.fMatrix, rect, style); } void SkGpuDevice::drawDRRect(const SkDraw& draw, const SkRRect& outer, const SkRRect& inner, const SkPaint& paint) { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawDRRect", fContext); CHECK_SHOULD_DRAW(draw); if (outer.isEmpty()) { return; } if (inner.isEmpty()) { return this->drawRRect(draw, outer, paint); } SkStrokeRec stroke(paint); if (stroke.isFillStyle() && !paint.getMaskFilter() && !paint.getPathEffect()) { GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, this->surfaceProps().isGammaCorrect(), &grPaint)) { return; } fDrawContext->drawDRRect(fClip, grPaint, *draw.fMatrix, outer, inner); return; } SkPath path; path.setIsVolatile(true); path.addRRect(outer); path.addRRect(inner); path.setFillType(SkPath::kEvenOdd_FillType); GrBlurUtils::drawPathWithMaskFilter(fContext, fDrawContext.get(), fClip, path, paint, *draw.fMatrix, nullptr, draw.fRC->getBounds(), true); } ///////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawOval(const SkDraw& draw, const SkRect& oval, const SkPaint& paint) { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawOval", fContext); CHECK_SHOULD_DRAW(draw); // Presumably the path effect warps this to something other than an oval if (paint.getPathEffect()) { SkPath path; path.setIsVolatile(true); path.addOval(oval); this->drawPath(draw, path, paint, nullptr, true); return; } if (paint.getMaskFilter()) { // The RRect path can handle special case blurring SkRRect rr = SkRRect::MakeOval(oval); return this->drawRRect(draw, rr, paint); } GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, this->surfaceProps().isGammaCorrect(), &grPaint)) { return; } fDrawContext->drawOval(fClip, grPaint, *draw.fMatrix, oval, GrStyle(paint)); } #include "SkMaskFilter.h" /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawStrokedLine(const SkPoint points[2], const SkDraw& draw, const SkPaint& origPaint) { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawStrokedLine", fContext); CHECK_SHOULD_DRAW(draw); // Adding support for round capping would require a GrDrawContext::fillRRectWithLocalMatrix // entry point SkASSERT(SkPaint::kRound_Cap != origPaint.getStrokeCap()); SkASSERT(SkPaint::kStroke_Style == origPaint.getStyle()); SkASSERT(!origPaint.getPathEffect()); SkASSERT(!origPaint.getMaskFilter()); const SkScalar halfWidth = 0.5f * origPaint.getStrokeWidth(); SkASSERT(halfWidth > 0); SkVector v = points[1] - points[0]; SkScalar length = SkPoint::Normalize(&v); if (!length) { v.fX = 1.0f; v.fY = 0.0f; } SkPaint newPaint(origPaint); newPaint.setStyle(SkPaint::kFill_Style); SkScalar xtraLength = 0.0f; if (SkPaint::kButt_Cap != origPaint.getStrokeCap()) { xtraLength = halfWidth; } SkPoint mid = points[0] + points[1]; mid.scale(0.5f); SkRect rect = SkRect::MakeLTRB(mid.fX-halfWidth, mid.fY - 0.5f*length - xtraLength, mid.fX+halfWidth, mid.fY + 0.5f*length + xtraLength); SkMatrix m; m.setSinCos(v.fX, -v.fY, mid.fX, mid.fY); SkMatrix local = m; m.postConcat(*draw.fMatrix); GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), newPaint, m, this->surfaceProps().isGammaCorrect(), &grPaint)) { return; } fDrawContext->fillRectWithLocalMatrix(fClip, grPaint, m, rect, local); } void SkGpuDevice::drawPath(const SkDraw& draw, const SkPath& origSrcPath, const SkPaint& paint, const SkMatrix* prePathMatrix, bool pathIsMutable) { ASSERT_SINGLE_OWNER if (!origSrcPath.isInverseFillType() && !paint.getPathEffect() && !prePathMatrix) { SkPoint points[2]; if (SkPaint::kStroke_Style == paint.getStyle() && paint.getStrokeWidth() > 0 && !paint.getMaskFilter() && SkPaint::kRound_Cap != paint.getStrokeCap() && draw.fMatrix->preservesRightAngles() && origSrcPath.isLine(points)) { // Path-based stroking looks better for thin rects SkScalar strokeWidth = draw.fMatrix->getMaxScale() * paint.getStrokeWidth(); if (strokeWidth >= 1.0f) { // Round capping support is currently disabled b.c. it would require // a RRect batch that takes a localMatrix. this->drawStrokedLine(points, draw, paint); return; } } bool isClosed; SkRect rect; if (origSrcPath.isRect(&rect, &isClosed) && isClosed) { this->drawRect(draw, rect, paint); return; } if (origSrcPath.isOval(&rect)) { this->drawOval(draw, rect, paint); return; } SkRRect rrect; if (origSrcPath.isRRect(&rrect)) { this->drawRRect(draw, rrect, paint); return; } } CHECK_SHOULD_DRAW(draw); GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawPath", fContext); GrBlurUtils::drawPathWithMaskFilter(fContext, fDrawContext.get(), fClip, origSrcPath, paint, *draw.fMatrix, prePathMatrix, draw.fRC->getBounds(), pathIsMutable); } static const int kBmpSmallTileSize = 1 << 10; static inline int get_tile_count(const SkIRect& srcRect, int tileSize) { int tilesX = (srcRect.fRight / tileSize) - (srcRect.fLeft / tileSize) + 1; int tilesY = (srcRect.fBottom / tileSize) - (srcRect.fTop / tileSize) + 1; return tilesX * tilesY; } static int determine_tile_size(const SkIRect& src, int maxTileSize) { if (maxTileSize <= kBmpSmallTileSize) { return maxTileSize; } size_t maxTileTotalTileSize = get_tile_count(src, maxTileSize); size_t smallTotalTileSize = get_tile_count(src, kBmpSmallTileSize); maxTileTotalTileSize *= maxTileSize * maxTileSize; smallTotalTileSize *= kBmpSmallTileSize * kBmpSmallTileSize; if (maxTileTotalTileSize > 2 * smallTotalTileSize) { return kBmpSmallTileSize; } else { return maxTileSize; } } // Given a bitmap, an optional src rect, and a context with a clip and matrix determine what // pixels from the bitmap are necessary. static void determine_clipped_src_rect(int width, int height, const GrClip& clip, const SkMatrix& viewMatrix, const SkISize& imageSize, const SkRect* srcRectPtr, SkIRect* clippedSrcIRect) { clip.getConservativeBounds(width, height, clippedSrcIRect, nullptr); SkMatrix inv; if (!viewMatrix.invert(&inv)) { clippedSrcIRect->setEmpty(); return; } SkRect clippedSrcRect = SkRect::Make(*clippedSrcIRect); inv.mapRect(&clippedSrcRect); if (srcRectPtr) { // we've setup src space 0,0 to map to the top left of the src rect. clippedSrcRect.offset(srcRectPtr->fLeft, srcRectPtr->fTop); if (!clippedSrcRect.intersect(*srcRectPtr)) { clippedSrcIRect->setEmpty(); return; } } clippedSrcRect.roundOut(clippedSrcIRect); SkIRect bmpBounds = SkIRect::MakeSize(imageSize); if (!clippedSrcIRect->intersect(bmpBounds)) { clippedSrcIRect->setEmpty(); } } bool SkGpuDevice::shouldTileImageID(uint32_t imageID, const SkIRect& imageRect, const SkMatrix& viewMatrix, const GrTextureParams& params, const SkRect* srcRectPtr, int maxTileSize, int* tileSize, SkIRect* clippedSubset) const { ASSERT_SINGLE_OWNER // if it's larger than the max tile size, then we have no choice but tiling. if (imageRect.width() > maxTileSize || imageRect.height() > maxTileSize) { determine_clipped_src_rect(fDrawContext->width(), fDrawContext->height(), fClip, viewMatrix, imageRect.size(), srcRectPtr, clippedSubset); *tileSize = determine_tile_size(*clippedSubset, maxTileSize); return true; } // If the image would only produce 4 tiles of the smaller size, don't bother tiling it. const size_t area = imageRect.width() * imageRect.height(); if (area < 4 * kBmpSmallTileSize * kBmpSmallTileSize) { return false; } // At this point we know we could do the draw by uploading the entire bitmap // as a texture. However, if the texture would be large compared to the // cache size and we don't require most of it for this draw then tile to // reduce the amount of upload and cache spill. // assumption here is that sw bitmap size is a good proxy for its size as // a texture size_t bmpSize = area * sizeof(SkPMColor); // assume 32bit pixels size_t cacheSize; fContext->getResourceCacheLimits(nullptr, &cacheSize); if (bmpSize < cacheSize / 2) { return false; } // Figure out how much of the src we will need based on the src rect and clipping. Reject if // tiling memory savings would be < 50%. determine_clipped_src_rect(fDrawContext->width(), fDrawContext->height(), fClip, viewMatrix, imageRect.size(), srcRectPtr, clippedSubset); *tileSize = kBmpSmallTileSize; // already know whole bitmap fits in one max sized tile. size_t usedTileBytes = get_tile_count(*clippedSubset, kBmpSmallTileSize) * kBmpSmallTileSize * kBmpSmallTileSize; return usedTileBytes < 2 * bmpSize; } bool SkGpuDevice::shouldTileBitmap(const SkBitmap& bitmap, const SkMatrix& viewMatrix, const GrTextureParams& params, const SkRect* srcRectPtr, int maxTileSize, int* tileSize, SkIRect* clippedSrcRect) const { ASSERT_SINGLE_OWNER // if bitmap is explictly texture backed then just use the texture if (bitmap.getTexture()) { return false; } return this->shouldTileImageID(bitmap.getGenerationID(), bitmap.getSubset(), viewMatrix, params, srcRectPtr, maxTileSize, tileSize, clippedSrcRect); } bool SkGpuDevice::shouldTileImage(const SkImage* image, const SkRect* srcRectPtr, SkCanvas::SrcRectConstraint constraint, SkFilterQuality quality, const SkMatrix& viewMatrix) const { ASSERT_SINGLE_OWNER // if image is explictly texture backed then just use the texture if (as_IB(image)->peekTexture()) { return false; } GrTextureParams params; bool doBicubic; GrTextureParams::FilterMode textureFilterMode = GrSkFilterQualityToGrFilterMode(quality, viewMatrix, SkMatrix::I(), &doBicubic); int tileFilterPad; if (doBicubic) { tileFilterPad = GrBicubicEffect::kFilterTexelPad; } else if (GrTextureParams::kNone_FilterMode == textureFilterMode) { tileFilterPad = 0; } else { tileFilterPad = 1; } params.setFilterMode(textureFilterMode); int maxTileSize = fContext->caps()->maxTileSize() - 2 * tileFilterPad; // these are output, which we safely ignore, as we just want to know the predicate int outTileSize; SkIRect outClippedSrcRect; return this->shouldTileImageID(image->unique(), image->bounds(), viewMatrix, params, srcRectPtr, maxTileSize, &outTileSize, &outClippedSrcRect); } void SkGpuDevice::drawBitmap(const SkDraw& origDraw, const SkBitmap& bitmap, const SkMatrix& m, const SkPaint& paint) { ASSERT_SINGLE_OWNER CHECK_SHOULD_DRAW(origDraw); SkMatrix viewMatrix; viewMatrix.setConcat(*origDraw.fMatrix, m); if (bitmap.getTexture()) { GrBitmapTextureAdjuster adjuster(&bitmap); // We can use kFast here because we know texture-backed bitmaps don't support extractSubset. this->drawTextureProducer(&adjuster, nullptr, nullptr, SkCanvas::kFast_SrcRectConstraint, viewMatrix, fClip, paint); return; } int maxTileSize = fContext->caps()->maxTileSize(); // The tile code path doesn't currently support AA, so if the paint asked for aa and we could // draw untiled, then we bypass checking for tiling purely for optimization reasons. bool drawAA = !fDrawContext->isUnifiedMultisampled() && paint.isAntiAlias() && bitmap.width() <= maxTileSize && bitmap.height() <= maxTileSize; bool skipTileCheck = drawAA || paint.getMaskFilter(); if (!skipTileCheck) { SkRect srcRect = SkRect::MakeIWH(bitmap.width(), bitmap.height()); int tileSize; SkIRect clippedSrcRect; GrTextureParams params; bool doBicubic; GrTextureParams::FilterMode textureFilterMode = GrSkFilterQualityToGrFilterMode(paint.getFilterQuality(), viewMatrix, SkMatrix::I(), &doBicubic); int tileFilterPad; if (doBicubic) { tileFilterPad = GrBicubicEffect::kFilterTexelPad; } else if (GrTextureParams::kNone_FilterMode == textureFilterMode) { tileFilterPad = 0; } else { tileFilterPad = 1; } params.setFilterMode(textureFilterMode); int maxTileSizeForFilter = fContext->caps()->maxTileSize() - 2 * tileFilterPad; if (this->shouldTileBitmap(bitmap, viewMatrix, params, &srcRect, maxTileSizeForFilter, &tileSize, &clippedSrcRect)) { this->drawTiledBitmap(bitmap, viewMatrix, srcRect, clippedSrcRect, params, paint, SkCanvas::kStrict_SrcRectConstraint, tileSize, doBicubic); return; } } GrBitmapTextureMaker maker(fContext, bitmap); this->drawTextureProducer(&maker, nullptr, nullptr, SkCanvas::kStrict_SrcRectConstraint, viewMatrix, fClip, paint); } // This method outsets 'iRect' by 'outset' all around and then clamps its extents to // 'clamp'. 'offset' is adjusted to remain positioned over the top-left corner // of 'iRect' for all possible outsets/clamps. static inline void clamped_outset_with_offset(SkIRect* iRect, int outset, SkPoint* offset, const SkIRect& clamp) { iRect->outset(outset, outset); int leftClampDelta = clamp.fLeft - iRect->fLeft; if (leftClampDelta > 0) { offset->fX -= outset - leftClampDelta; iRect->fLeft = clamp.fLeft; } else { offset->fX -= outset; } int topClampDelta = clamp.fTop - iRect->fTop; if (topClampDelta > 0) { offset->fY -= outset - topClampDelta; iRect->fTop = clamp.fTop; } else { offset->fY -= outset; } if (iRect->fRight > clamp.fRight) { iRect->fRight = clamp.fRight; } if (iRect->fBottom > clamp.fBottom) { iRect->fBottom = clamp.fBottom; } } // Break 'bitmap' into several tiles to draw it since it has already // been determined to be too large to fit in VRAM void SkGpuDevice::drawTiledBitmap(const SkBitmap& bitmap, const SkMatrix& viewMatrix, const SkRect& srcRect, const SkIRect& clippedSrcIRect, const GrTextureParams& params, const SkPaint& origPaint, SkCanvas::SrcRectConstraint constraint, int tileSize, bool bicubic) { ASSERT_SINGLE_OWNER // This is the funnel for all paths that draw tiled bitmaps/images. Log histogram entries. SK_HISTOGRAM_BOOLEAN("DrawTiled", true); LogDrawScaleFactor(viewMatrix, origPaint.getFilterQuality()); // The following pixel lock is technically redundant, but it is desirable // to lock outside of the tile loop to prevent redecoding the whole image // at each tile in cases where 'bitmap' holds an SkDiscardablePixelRef that // is larger than the limit of the discardable memory pool. SkAutoLockPixels alp(bitmap); const SkPaint* paint = &origPaint; SkPaint tempPaint; if (origPaint.isAntiAlias() && !fDrawContext->isUnifiedMultisampled()) { // Drop antialiasing to avoid seams at tile boundaries. tempPaint = origPaint; tempPaint.setAntiAlias(false); paint = &tempPaint; } SkRect clippedSrcRect = SkRect::Make(clippedSrcIRect); int nx = bitmap.width() / tileSize; int ny = bitmap.height() / tileSize; for (int x = 0; x <= nx; x++) { for (int y = 0; y <= ny; y++) { SkRect tileR; tileR.set(SkIntToScalar(x * tileSize), SkIntToScalar(y * tileSize), SkIntToScalar((x + 1) * tileSize), SkIntToScalar((y + 1) * tileSize)); if (!SkRect::Intersects(tileR, clippedSrcRect)) { continue; } if (!tileR.intersect(srcRect)) { continue; } SkBitmap tmpB; SkIRect iTileR; tileR.roundOut(&iTileR); SkPoint offset = SkPoint::Make(SkIntToScalar(iTileR.fLeft), SkIntToScalar(iTileR.fTop)); // Adjust the context matrix to draw at the right x,y in device space SkMatrix viewM = viewMatrix; SkMatrix tmpM; tmpM.setTranslate(offset.fX - srcRect.fLeft, offset.fY - srcRect.fTop); viewM.preConcat(tmpM); if (GrTextureParams::kNone_FilterMode != params.filterMode() || bicubic) { SkIRect iClampRect; if (SkCanvas::kFast_SrcRectConstraint == constraint) { // In bleed mode we want to always expand the tile on all edges // but stay within the bitmap bounds iClampRect = SkIRect::MakeWH(bitmap.width(), bitmap.height()); } else { // In texture-domain/clamp mode we only want to expand the // tile on edges interior to "srcRect" (i.e., we want to // not bleed across the original clamped edges) srcRect.roundOut(&iClampRect); } int outset = bicubic ? GrBicubicEffect::kFilterTexelPad : 1; clamped_outset_with_offset(&iTileR, outset, &offset, iClampRect); } if (bitmap.extractSubset(&tmpB, iTileR)) { // now offset it to make it "local" to our tmp bitmap tileR.offset(-offset.fX, -offset.fY); GrTextureParams paramsTemp = params; // de-optimized this determination bool needsTextureDomain = true; this->internalDrawBitmap(tmpB, viewM, tileR, paramsTemp, *paint, constraint, bicubic, needsTextureDomain); } } } } /* * This is called by drawBitmap(), which has to handle images that may be too * large to be represented by a single texture. * * internalDrawBitmap assumes that the specified bitmap will fit in a texture * and that non-texture portion of the GrPaint has already been setup. */ void SkGpuDevice::internalDrawBitmap(const SkBitmap& bitmap, const SkMatrix& viewMatrix, const SkRect& srcRect, const GrTextureParams& params, const SkPaint& paint, SkCanvas::SrcRectConstraint constraint, bool bicubic, bool needsTextureDomain) { // We should have already handled bitmaps larger than the max texture size. SkASSERT(bitmap.width() <= fContext->caps()->maxTextureSize() && bitmap.height() <= fContext->caps()->maxTextureSize()); // Unless the bitmap is inherently texture-backed, we should be respecting the max tile size // by the time we get here. SkASSERT(bitmap.getTexture() || (bitmap.width() <= fContext->caps()->maxTileSize() && bitmap.height() <= fContext->caps()->maxTileSize())); GrTexture* texture; SkSourceGammaTreatment gammaTreatment = this->surfaceProps().isGammaCorrect() ? SkSourceGammaTreatment::kRespect : SkSourceGammaTreatment::kIgnore; AutoBitmapTexture abt(fContext, bitmap, params, gammaTreatment, &texture); if (nullptr == texture) { return; } SkRect dstRect = {0, 0, srcRect.width(), srcRect.height() }; SkRect paintRect; SkScalar wInv = SkScalarInvert(SkIntToScalar(texture->width())); SkScalar hInv = SkScalarInvert(SkIntToScalar(texture->height())); paintRect.setLTRB(SkScalarMul(srcRect.fLeft, wInv), SkScalarMul(srcRect.fTop, hInv), SkScalarMul(srcRect.fRight, wInv), SkScalarMul(srcRect.fBottom, hInv)); SkMatrix texMatrix; texMatrix.reset(); if (kAlpha_8_SkColorType == bitmap.colorType() && paint.getShader()) { // In cases where we are doing an A8 bitmap draw with a shader installed, we cannot use // local coords with the bitmap draw since it may mess up texture look ups for the shader. // Thus we need to pass in the transform matrix directly to the texture processor used for // the bitmap draw. texMatrix.setScale(wInv, hInv); } SkRect textureDomain = SkRect::MakeEmpty(); // Construct a GrPaint by setting the bitmap texture as the first effect and then configuring // the rest from the SkPaint. sk_sp fp; if (needsTextureDomain && (SkCanvas::kStrict_SrcRectConstraint == constraint)) { // Use a constrained texture domain to avoid color bleeding SkScalar left, top, right, bottom; if (srcRect.width() > SK_Scalar1) { SkScalar border = SK_ScalarHalf / texture->width(); left = paintRect.left() + border; right = paintRect.right() - border; } else { left = right = SkScalarHalf(paintRect.left() + paintRect.right()); } if (srcRect.height() > SK_Scalar1) { SkScalar border = SK_ScalarHalf / texture->height(); top = paintRect.top() + border; bottom = paintRect.bottom() - border; } else { top = bottom = SkScalarHalf(paintRect.top() + paintRect.bottom()); } textureDomain.setLTRB(left, top, right, bottom); if (bicubic) { fp = GrBicubicEffect::Make(texture, texMatrix, textureDomain); } else { fp = GrTextureDomainEffect::Make(texture, texMatrix, textureDomain, GrTextureDomain::kClamp_Mode, params.filterMode()); } } else if (bicubic) { SkASSERT(GrTextureParams::kNone_FilterMode == params.filterMode()); SkShader::TileMode tileModes[2] = { params.getTileModeX(), params.getTileModeY() }; fp = GrBicubicEffect::Make(texture, texMatrix, tileModes); } else { fp = GrSimpleTextureEffect::Make(texture, texMatrix, params); } GrPaint grPaint; if (!SkPaintToGrPaintWithTexture(this->context(), paint, viewMatrix, std::move(fp), kAlpha_8_SkColorType == bitmap.colorType(), this->surfaceProps().isGammaCorrect(), &grPaint)) { return; } if (kAlpha_8_SkColorType == bitmap.colorType() && paint.getShader()) { // We don't have local coords in this case and have previously set the transform // matrices directly on the texture processor. fDrawContext->drawRect(fClip, grPaint, viewMatrix, dstRect); } else { fDrawContext->fillRectToRect(fClip, grPaint, viewMatrix, dstRect, paintRect); } } void SkGpuDevice::drawSprite(const SkDraw& draw, const SkBitmap& bitmap, int left, int top, const SkPaint& paint) { ASSERT_SINGLE_OWNER // drawSprite is defined to be in device coords. CHECK_SHOULD_DRAW(draw); SkAutoLockPixels alp(bitmap, !bitmap.getTexture()); if (!bitmap.getTexture() && !bitmap.readyToDraw()) { return; } int offX = bitmap.pixelRefOrigin().fX; int offY = bitmap.pixelRefOrigin().fY; int w = bitmap.width(); int h = bitmap.height(); GrTexture* texture; // draw sprite neither filters nor tiles. AutoBitmapTexture abt(fContext, bitmap, GrTextureParams::ClampNoFilter(), SkSourceGammaTreatment::kRespect, &texture); if (!texture) { return; } bool alphaOnly = kAlpha_8_SkColorType == bitmap.colorType(); SkASSERT(!paint.getImageFilter()); GrPaint grPaint; sk_sp fp(GrSimpleTextureEffect::Make(texture, SkMatrix::I())); if (alphaOnly) { fp = GrFragmentProcessor::MulOutputByInputUnpremulColor(std::move(fp)); } else { fp = GrFragmentProcessor::MulOutputByInputAlpha(std::move(fp)); } if (!SkPaintToGrPaintReplaceShader(this->context(), paint, std::move(fp), this->surfaceProps().isGammaCorrect(), &grPaint)) { return; } fDrawContext->fillRectToRect(fClip, grPaint, SkMatrix::I(), SkRect::MakeXYWH(SkIntToScalar(left), SkIntToScalar(top), SkIntToScalar(w), SkIntToScalar(h)), SkRect::MakeXYWH(SkIntToScalar(offX) / texture->width(), SkIntToScalar(offY) / texture->height(), SkIntToScalar(w) / texture->width(), SkIntToScalar(h) / texture->height())); } void SkGpuDevice::drawBitmapRect(const SkDraw& draw, const SkBitmap& bitmap, const SkRect* src, const SkRect& origDst, const SkPaint& paint, SkCanvas::SrcRectConstraint constraint) { ASSERT_SINGLE_OWNER CHECK_SHOULD_DRAW(draw); if (bitmap.getTexture()) { GrBitmapTextureAdjuster adjuster(&bitmap); this->drawTextureProducer(&adjuster, src, &origDst, constraint, *draw.fMatrix, fClip, paint); return; } // The src rect is inferred to be the bmp bounds if not provided. Otherwise, the src rect must // be clipped to the bmp bounds. To determine tiling parameters we need the filter mode which // in turn requires knowing the src-to-dst mapping. If the src was clipped to the bmp bounds // then we use the src-to-dst mapping to compute a new clipped dst rect. const SkRect* dst = &origDst; const SkRect bmpBounds = SkRect::MakeIWH(bitmap.width(), bitmap.height()); // Compute matrix from the two rectangles if (!src) { src = &bmpBounds; } SkMatrix srcToDstMatrix; if (!srcToDstMatrix.setRectToRect(*src, *dst, SkMatrix::kFill_ScaleToFit)) { return; } SkRect tmpSrc, tmpDst; if (src != &bmpBounds) { if (!bmpBounds.contains(*src)) { tmpSrc = *src; if (!tmpSrc.intersect(bmpBounds)) { return; // nothing to draw } src = &tmpSrc; srcToDstMatrix.mapRect(&tmpDst, *src); dst = &tmpDst; } } int maxTileSize = fContext->caps()->maxTileSize(); // The tile code path doesn't currently support AA, so if the paint asked for aa and we could // draw untiled, then we bypass checking for tiling purely for optimization reasons. bool drawAA = !fDrawContext->isUnifiedMultisampled() && paint.isAntiAlias() && bitmap.width() <= maxTileSize && bitmap.height() <= maxTileSize; bool skipTileCheck = drawAA || paint.getMaskFilter(); if (!skipTileCheck) { int tileSize; SkIRect clippedSrcRect; GrTextureParams params; bool doBicubic; GrTextureParams::FilterMode textureFilterMode = GrSkFilterQualityToGrFilterMode(paint.getFilterQuality(), *draw.fMatrix, srcToDstMatrix, &doBicubic); int tileFilterPad; if (doBicubic) { tileFilterPad = GrBicubicEffect::kFilterTexelPad; } else if (GrTextureParams::kNone_FilterMode == textureFilterMode) { tileFilterPad = 0; } else { tileFilterPad = 1; } params.setFilterMode(textureFilterMode); int maxTileSizeForFilter = fContext->caps()->maxTileSize() - 2 * tileFilterPad; // Fold the dst rect into the view matrix. This is only OK because we don't get here if // we have a mask filter. SkMatrix viewMatrix = *draw.fMatrix; viewMatrix.preTranslate(dst->fLeft, dst->fTop); viewMatrix.preScale(dst->width()/src->width(), dst->height()/src->height()); if (this->shouldTileBitmap(bitmap, viewMatrix, params, src, maxTileSizeForFilter, &tileSize, &clippedSrcRect)) { this->drawTiledBitmap(bitmap, viewMatrix, *src, clippedSrcRect, params, paint, constraint, tileSize, doBicubic); return; } } GrBitmapTextureMaker maker(fContext, bitmap); this->drawTextureProducer(&maker, src, dst, constraint, *draw.fMatrix, fClip, paint); } void SkGpuDevice::drawDevice(const SkDraw& draw, SkBaseDevice* device, int x, int y, const SkPaint& paint) { ASSERT_SINGLE_OWNER // clear of the source device must occur before CHECK_SHOULD_DRAW GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawDevice", fContext); SkGpuDevice* dev = static_cast(device); // drawDevice is defined to be in device coords. CHECK_SHOULD_DRAW(draw); sk_sp devTex(dev->accessDrawContext()->asTexture()); if (!devTex) { return; } const SkImageInfo ii = dev->imageInfo(); int w = ii.width(); int h = ii.height(); SkASSERT(!paint.getImageFilter()); GrPaint grPaint; sk_sp fp(GrSimpleTextureEffect::Make(devTex.get(), SkMatrix::I())); if (GrPixelConfigIsAlphaOnly(devTex->config())) { // Can this happen? fp = GrFragmentProcessor::MulOutputByInputUnpremulColor(std::move(fp)); } else { fp = GrFragmentProcessor::MulOutputByInputAlpha(std::move(fp)); } if (!SkPaintToGrPaintReplaceShader(this->context(), paint, std::move(fp), this->surfaceProps().isGammaCorrect(), &grPaint)) { return; } SkRect dstRect = SkRect::MakeXYWH(SkIntToScalar(x), SkIntToScalar(y), SkIntToScalar(w), SkIntToScalar(h)); // The device being drawn may not fill up its texture (e.g. saveLayer uses approximate // scratch texture). SkRect srcRect = SkRect::MakeWH(SK_Scalar1 * w / devTex->width(), SK_Scalar1 * h / devTex->height()); fDrawContext->fillRectToRect(fClip, grPaint, SkMatrix::I(), dstRect, srcRect); } void SkGpuDevice::drawImage(const SkDraw& draw, const SkImage* image, SkScalar x, SkScalar y, const SkPaint& paint) { ASSERT_SINGLE_OWNER SkMatrix viewMatrix = *draw.fMatrix; viewMatrix.preTranslate(x, y); if (as_IB(image)->peekTexture()) { CHECK_SHOULD_DRAW(draw); GrImageTextureAdjuster adjuster(as_IB(image)); this->drawTextureProducer(&adjuster, nullptr, nullptr, SkCanvas::kFast_SrcRectConstraint, viewMatrix, fClip, paint); return; } else { SkBitmap bm; if (this->shouldTileImage(image, nullptr, SkCanvas::kFast_SrcRectConstraint, paint.getFilterQuality(), *draw.fMatrix)) { // only support tiling as bitmap at the moment, so force raster-version if (!as_IB(image)->getROPixels(&bm)) { return; } this->drawBitmap(draw, bm, SkMatrix::MakeTrans(x, y), paint); } else if (SkImageCacherator* cacher = as_IB(image)->peekCacherator()) { CHECK_SHOULD_DRAW(draw); GrImageTextureMaker maker(fContext, cacher, image, SkImage::kAllow_CachingHint); this->drawTextureProducer(&maker, nullptr, nullptr, SkCanvas::kFast_SrcRectConstraint, viewMatrix, fClip, paint); } else if (as_IB(image)->getROPixels(&bm)) { this->drawBitmap(draw, bm, SkMatrix::MakeTrans(x, y), paint); } } } void SkGpuDevice::drawImageRect(const SkDraw& draw, const SkImage* image, const SkRect* src, const SkRect& dst, const SkPaint& paint, SkCanvas::SrcRectConstraint constraint) { ASSERT_SINGLE_OWNER if (as_IB(image)->peekTexture()) { CHECK_SHOULD_DRAW(draw); GrImageTextureAdjuster adjuster(as_IB(image)); this->drawTextureProducer(&adjuster, src, &dst, constraint, *draw.fMatrix, fClip, paint); return; } SkBitmap bm; SkMatrix totalMatrix = *draw.fMatrix; totalMatrix.preScale(dst.width() / (src ? src->width() : image->width()), dst.height() / (src ? src->height() : image->height())); if (this->shouldTileImage(image, src, constraint, paint.getFilterQuality(), totalMatrix)) { // only support tiling as bitmap at the moment, so force raster-version if (!as_IB(image)->getROPixels(&bm)) { return; } this->drawBitmapRect(draw, bm, src, dst, paint, constraint); } else if (SkImageCacherator* cacher = as_IB(image)->peekCacherator()) { CHECK_SHOULD_DRAW(draw); GrImageTextureMaker maker(fContext, cacher, image, SkImage::kAllow_CachingHint); this->drawTextureProducer(&maker, src, &dst, constraint, *draw.fMatrix, fClip, paint); } else if (as_IB(image)->getROPixels(&bm)) { this->drawBitmapRect(draw, bm, src, dst, paint, constraint); } } void SkGpuDevice::drawProducerNine(const SkDraw& draw, GrTextureProducer* producer, const SkIRect& center, const SkRect& dst, const SkPaint& paint) { GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawProducerNine", fContext); CHECK_SHOULD_DRAW(draw); bool useFallback = paint.getMaskFilter() || paint.isAntiAlias() || fDrawContext->isUnifiedMultisampled(); bool doBicubic; GrTextureParams::FilterMode textureFilterMode = GrSkFilterQualityToGrFilterMode(paint.getFilterQuality(), *draw.fMatrix, SkMatrix::I(), &doBicubic); if (useFallback || doBicubic || GrTextureParams::kNone_FilterMode != textureFilterMode) { SkNinePatchIter iter(producer->width(), producer->height(), center, dst); SkRect srcR, dstR; while (iter.next(&srcR, &dstR)) { this->drawTextureProducer(producer, &srcR, &dstR, SkCanvas::kStrict_SrcRectConstraint, *draw.fMatrix, fClip, paint); } return; } static const GrTextureParams::FilterMode kMode = GrTextureParams::kNone_FilterMode; bool gammaCorrect = this->surfaceProps().isGammaCorrect(); SkSourceGammaTreatment gammaTreatment = gammaCorrect ? SkSourceGammaTreatment::kRespect : SkSourceGammaTreatment::kIgnore; sk_sp fp( producer->createFragmentProcessor(SkMatrix::I(), SkRect::MakeIWH(producer->width(), producer->height()), GrTextureProducer::kNo_FilterConstraint, true, &kMode, gammaTreatment)); GrPaint grPaint; if (!SkPaintToGrPaintWithTexture(this->context(), paint, *draw.fMatrix, std::move(fp), producer->isAlphaOnly(), gammaCorrect, &grPaint)) { return; } fDrawContext->drawImageNine(fClip, grPaint, *draw.fMatrix, producer->width(), producer->height(), center, dst); } void SkGpuDevice::drawImageNine(const SkDraw& draw, const SkImage* image, const SkIRect& center, const SkRect& dst, const SkPaint& paint) { ASSERT_SINGLE_OWNER if (as_IB(image)->peekTexture()) { GrImageTextureAdjuster adjuster(as_IB(image)); this->drawProducerNine(draw, &adjuster, center, dst, paint); } else { SkBitmap bm; if (SkImageCacherator* cacher = as_IB(image)->peekCacherator()) { GrImageTextureMaker maker(fContext, cacher, image, SkImage::kAllow_CachingHint); this->drawProducerNine(draw, &maker, center, dst, paint); } else if (as_IB(image)->getROPixels(&bm)) { this->drawBitmapNine(draw, bm, center, dst, paint); } } } void SkGpuDevice::drawBitmapNine(const SkDraw& draw, const SkBitmap& bitmap, const SkIRect& center, const SkRect& dst, const SkPaint& paint) { ASSERT_SINGLE_OWNER if (bitmap.getTexture()) { GrBitmapTextureAdjuster adjuster(&bitmap); this->drawProducerNine(draw, &adjuster, center, dst, paint); } else { GrBitmapTextureMaker maker(fContext, bitmap); this->drawProducerNine(draw, &maker, center, dst, paint); } } /////////////////////////////////////////////////////////////////////////////// // must be in SkCanvas::VertexMode order static const GrPrimitiveType gVertexMode2PrimitiveType[] = { kTriangles_GrPrimitiveType, kTriangleStrip_GrPrimitiveType, kTriangleFan_GrPrimitiveType, }; void SkGpuDevice::drawVertices(const SkDraw& draw, SkCanvas::VertexMode vmode, int vertexCount, const SkPoint vertices[], const SkPoint texs[], const SkColor colors[], SkXfermode* xmode, const uint16_t indices[], int indexCount, const SkPaint& paint) { ASSERT_SINGLE_OWNER CHECK_SHOULD_DRAW(draw); GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawVertices", fContext); // If both textures and vertex-colors are nullptr, strokes hairlines with the paint's color. if ((nullptr == texs || nullptr == paint.getShader()) && nullptr == colors) { texs = nullptr; SkPaint copy(paint); copy.setStyle(SkPaint::kStroke_Style); copy.setStrokeWidth(0); GrPaint grPaint; // we ignore the shader if texs is null. if (!SkPaintToGrPaintNoShader(this->context(), copy, this->surfaceProps().isGammaCorrect(), &grPaint)) { return; } int triangleCount = 0; int n = (nullptr == indices) ? vertexCount : indexCount; switch (vmode) { case SkCanvas::kTriangles_VertexMode: triangleCount = n / 3; break; case SkCanvas::kTriangleStrip_VertexMode: case SkCanvas::kTriangleFan_VertexMode: triangleCount = n - 2; break; } VertState state(vertexCount, indices, indexCount); VertState::Proc vertProc = state.chooseProc(vmode); //number of indices for lines per triangle with kLines indexCount = triangleCount * 6; SkAutoTDeleteArray lineIndices(new uint16_t[indexCount]); int i = 0; while (vertProc(&state)) { lineIndices[i] = state.f0; lineIndices[i + 1] = state.f1; lineIndices[i + 2] = state.f1; lineIndices[i + 3] = state.f2; lineIndices[i + 4] = state.f2; lineIndices[i + 5] = state.f0; i += 6; } fDrawContext->drawVertices(fClip, grPaint, *draw.fMatrix, kLines_GrPrimitiveType, vertexCount, vertices, texs, colors, lineIndices.get(), indexCount); return; } GrPrimitiveType primType = gVertexMode2PrimitiveType[vmode]; SkAutoSTMalloc<128, GrColor> convertedColors(0); if (colors) { // need to convert byte order and from non-PM to PM. TODO: Keep unpremul until after // interpolation. convertedColors.reset(vertexCount); for (int i = 0; i < vertexCount; ++i) { convertedColors[i] = SkColorToPremulGrColor(colors[i]); } colors = convertedColors.get(); } GrPaint grPaint; if (texs && paint.getShader()) { if (colors) { // When there are texs and colors the shader and colors are combined using xmode. A null // xmode is defined to mean modulate. SkXfermode::Mode colorMode; if (xmode) { if (!xmode->asMode(&colorMode)) { return; } } else { colorMode = SkXfermode::kModulate_Mode; } if (!SkPaintToGrPaintWithXfermode(this->context(), paint, *draw.fMatrix, colorMode, false, this->surfaceProps().isGammaCorrect(), &grPaint)) { return; } } else { // We have a shader, but no colors to blend it against. if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, this->surfaceProps().isGammaCorrect(), &grPaint)) { return; } } } else { if (colors) { // We have colors, but either have no shader or no texture coords (which implies that // we should ignore the shader). if (!SkPaintToGrPaintWithPrimitiveColor(this->context(), paint, this->surfaceProps().isGammaCorrect(), &grPaint)) { return; } } else { // No colors and no shaders. Just draw with the paint color. if (!SkPaintToGrPaintNoShader(this->context(), paint, this->surfaceProps().isGammaCorrect(), &grPaint)) { return; } } } fDrawContext->drawVertices(fClip, grPaint, *draw.fMatrix, primType, vertexCount, vertices, texs, colors, indices, indexCount); } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawAtlas(const SkDraw& draw, const SkImage* atlas, const SkRSXform xform[], const SkRect texRect[], const SkColor colors[], int count, SkXfermode::Mode mode, const SkPaint& paint) { ASSERT_SINGLE_OWNER if (paint.isAntiAlias()) { this->INHERITED::drawAtlas(draw, atlas, xform, texRect, colors, count, mode, paint); return; } CHECK_SHOULD_DRAW(draw); GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawText", fContext); SkPaint p(paint); p.setShader(atlas->makeShader(SkShader::kClamp_TileMode, SkShader::kClamp_TileMode)); GrPaint grPaint; if (colors) { if (!SkPaintToGrPaintWithXfermode(this->context(), p, *draw.fMatrix, mode, true, this->surfaceProps().isGammaCorrect(), &grPaint)) { return; } } else { if (!SkPaintToGrPaint(this->context(), p, *draw.fMatrix, this->surfaceProps().isGammaCorrect(), &grPaint)) { return; } } SkDEBUGCODE(this->validate();) fDrawContext->drawAtlas(fClip, grPaint, *draw.fMatrix, count, xform, texRect, colors); } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawText(const SkDraw& draw, const void* text, size_t byteLength, SkScalar x, SkScalar y, const SkPaint& paint) { ASSERT_SINGLE_OWNER CHECK_SHOULD_DRAW(draw); GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawText", fContext); GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, this->surfaceProps().isGammaCorrect(), &grPaint)) { return; } SkDEBUGCODE(this->validate();) fDrawContext->drawText(fClip, grPaint, paint, *draw.fMatrix, (const char *)text, byteLength, x, y, draw.fRC->getBounds()); } void SkGpuDevice::drawPosText(const SkDraw& draw, const void* text, size_t byteLength, const SkScalar pos[], int scalarsPerPos, const SkPoint& offset, const SkPaint& paint) { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawPosText", fContext); CHECK_SHOULD_DRAW(draw); GrPaint grPaint; if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, this->surfaceProps().isGammaCorrect(), &grPaint)) { return; } SkDEBUGCODE(this->validate();) fDrawContext->drawPosText(fClip, grPaint, paint, *draw.fMatrix, (const char *)text, byteLength, pos, scalarsPerPos, offset, draw.fRC->getBounds()); } void SkGpuDevice::drawTextBlob(const SkDraw& draw, const SkTextBlob* blob, SkScalar x, SkScalar y, const SkPaint& paint, SkDrawFilter* drawFilter) { ASSERT_SINGLE_OWNER GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawTextBlob", fContext); CHECK_SHOULD_DRAW(draw); SkDEBUGCODE(this->validate();) fDrawContext->drawTextBlob(fClip, paint, *draw.fMatrix, blob, x, y, drawFilter, draw.fRC->getBounds()); } /////////////////////////////////////////////////////////////////////////////// bool SkGpuDevice::onShouldDisableLCD(const SkPaint& paint) const { return GrTextUtils::ShouldDisableLCD(paint); } void SkGpuDevice::flush() { ASSERT_SINGLE_OWNER fRenderTarget->prepareForExternalIO(); } /////////////////////////////////////////////////////////////////////////////// SkBaseDevice* SkGpuDevice::onCreateDevice(const CreateInfo& cinfo, const SkPaint*) { ASSERT_SINGLE_OWNER SkSurfaceProps props(this->surfaceProps().flags(), cinfo.fPixelGeometry); // layers are never drawn in repeat modes, so we can request an approx // match and ignore any padding. SkBackingFit fit = kNever_TileUsage == cinfo.fTileUsage ? SkBackingFit::kApprox : SkBackingFit::kExact; sk_sp dc(fContext->newDrawContext(fit, cinfo.fInfo.width(), cinfo.fInfo.height(), fDrawContext->config(), fDrawContext->desc().fSampleCnt, kDefault_GrSurfaceOrigin, &props)); if (!dc) { SkErrorInternals::SetError( kInternalError_SkError, "---- failed to create gpu device texture [%d %d]\n", cinfo.fInfo.width(), cinfo.fInfo.height()); return nullptr; } // Skia's convention is to only clear a device if it is non-opaque. InitContents init = cinfo.fInfo.isOpaque() ? kUninit_InitContents : kClear_InitContents; return SkGpuDevice::Make(std::move(dc), cinfo.fInfo.width(), cinfo.fInfo.height(), init).release(); } sk_sp SkGpuDevice::makeSurface(const SkImageInfo& info, const SkSurfaceProps& props) { ASSERT_SINGLE_OWNER // TODO: Change the signature of newSurface to take a budgeted parameter. static const SkBudgeted kBudgeted = SkBudgeted::kNo; return SkSurface::MakeRenderTarget(fContext, kBudgeted, info, fDrawContext->desc().fSampleCnt, &props); } bool SkGpuDevice::EXPERIMENTAL_drawPicture(SkCanvas* mainCanvas, const SkPicture* mainPicture, const SkMatrix* matrix, const SkPaint* paint) { ASSERT_SINGLE_OWNER #ifndef SK_IGNORE_GPU_LAYER_HOISTING // todo: should handle this natively if (paint || (kRGBA_8888_SkColorType != mainCanvas->imageInfo().colorType() && kBGRA_8888_SkColorType != mainCanvas->imageInfo().colorType())) { return false; } const SkBigPicture::AccelData* data = nullptr; if (const SkBigPicture* bp = mainPicture->asSkBigPicture()) { data = bp->accelData(); } if (!data) { return false; } const SkLayerInfo *gpuData = static_cast(data); if (0 == gpuData->numBlocks()) { return false; } SkTDArray atlasedNeedRendering, atlasedRecycled; SkIRect iBounds; if (!mainCanvas->getClipDeviceBounds(&iBounds)) { return false; } SkRect clipBounds = SkRect::Make(iBounds); SkMatrix initialMatrix = mainCanvas->getTotalMatrix(); GrLayerHoister::Begin(fContext); GrLayerHoister::FindLayersToAtlas(fContext, mainPicture, initialMatrix, clipBounds, &atlasedNeedRendering, &atlasedRecycled, fDrawContext->numColorSamples()); GrLayerHoister::DrawLayersToAtlas(fContext, atlasedNeedRendering); SkTDArray needRendering, recycled; SkAutoCanvasMatrixPaint acmp(mainCanvas, matrix, paint, mainPicture->cullRect()); GrLayerHoister::FindLayersToHoist(fContext, mainPicture, initialMatrix, clipBounds, &needRendering, &recycled, fDrawContext->numColorSamples()); GrLayerHoister::DrawLayers(fContext, needRendering); // Render the entire picture using new layers GrRecordReplaceDraw(mainPicture, mainCanvas, fContext->getLayerCache(), initialMatrix, nullptr); GrLayerHoister::UnlockLayers(fContext, needRendering); GrLayerHoister::UnlockLayers(fContext, recycled); GrLayerHoister::UnlockLayers(fContext, atlasedNeedRendering); GrLayerHoister::UnlockLayers(fContext, atlasedRecycled); GrLayerHoister::End(fContext); return true; #else return false; #endif } SkImageFilterCache* SkGpuDevice::getImageFilterCache() { ASSERT_SINGLE_OWNER // We always return a transient cache, so it is freed after each // filter traversal. return SkImageFilterCache::Create(kDefaultImageFilterCacheSize); } #endif