/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrShape.h" GrShape& GrShape::operator=(const GrShape& that) { bool wasPath = Type::kPath == fType; fStyle = that.fStyle; fType = that.fType; switch (fType) { case Type::kEmpty: if (wasPath) { fPath.reset(); } break; case Type::kRRect: if (wasPath) { fPath.reset(); } fRRect = that.fRRect; fRRectDir = that.fRRectDir; fRRectStart = that.fRRectStart; fRRectIsInverted = that.fRRectIsInverted; break; case Type::kPath: if (wasPath) { *fPath.get() = *that.fPath.get(); } else { fPath.set(*that.fPath.get()); } fPathGenID = that.fPathGenID; break; } fInheritedKey.reset(that.fInheritedKey.count()); sk_careful_memcpy(fInheritedKey.get(), that.fInheritedKey.get(), sizeof(uint32_t) * fInheritedKey.count()); return *this; } const SkRect& GrShape::bounds() const { static constexpr SkRect kEmpty = SkRect::MakeEmpty(); switch (fType) { case Type::kEmpty: return kEmpty; case Type::kRRect: return fRRect.getBounds(); case Type::kPath: return fPath.get()->getBounds(); } SkFAIL("Unknown shape type"); return kEmpty; } void GrShape::styledBounds(SkRect* bounds) const { if (Type::kEmpty == fType && !fStyle.hasNonDashPathEffect()) { *bounds = SkRect::MakeEmpty(); } else { fStyle.adjustBounds(bounds, this->bounds()); } } int GrShape::unstyledKeySize() const { if (fInheritedKey.count()) { return fInheritedKey.count(); } switch (fType) { case Type::kEmpty: return 1; case Type::kRRect: SkASSERT(!fInheritedKey.count()); SkASSERT(0 == SkRRect::kSizeInMemory % sizeof(uint32_t)); // + 1 for the direction, start index, and inverseness. return SkRRect::kSizeInMemory / sizeof(uint32_t) + 1; case Type::kPath: if (0 == fPathGenID) { return -1; } else { // The key is the path ID and fill type. return 2; } } SkFAIL("Should never get here."); return 0; } void GrShape::writeUnstyledKey(uint32_t* key) const { SkASSERT(this->unstyledKeySize()); SkDEBUGCODE(uint32_t* origKey = key;) if (fInheritedKey.count()) { memcpy(key, fInheritedKey.get(), sizeof(uint32_t) * fInheritedKey.count()); SkDEBUGCODE(key += fInheritedKey.count();) } else { switch (fType) { case Type::kEmpty: *key++ = 1; break; case Type::kRRect: fRRect.writeToMemory(key); key += SkRRect::kSizeInMemory / sizeof(uint32_t); *key = (fRRectDir == SkPath::kCCW_Direction) ? (1 << 31) : 0; *key |= fRRectIsInverted ? (1 << 30) : 0; *key++ |= fRRectStart; SkASSERT(fRRectStart < 8); break; case Type::kPath: SkASSERT(fPathGenID); *key++ = fPathGenID; // We could canonicalize the fill rule for paths that don't differentiate between // even/odd or winding fill (e.g. convex). *key++ = fPath.get()->getFillType(); break; } } SkASSERT(key - origKey == this->unstyledKeySize()); } void GrShape::setInheritedKey(const GrShape &parent, GrStyle::Apply apply, SkScalar scale) { SkASSERT(!fInheritedKey.count()); // If the output shape turns out to be simple, then we will just use its geometric key if (Type::kPath == fType) { // We want ApplyFullStyle(ApplyPathEffect(shape)) to have the same key as // ApplyFullStyle(shape). // The full key is structured as (geo,path_effect,stroke). // If we do ApplyPathEffect we get get,path_effect as the inherited key. If we then // do ApplyFullStyle we'll memcpy geo,path_effect into the new inherited key // and then append the style key (which should now be stroke only) at the end. int parentCnt = parent.fInheritedKey.count(); bool useParentGeoKey = !parentCnt; if (useParentGeoKey) { parentCnt = parent.unstyledKeySize(); if (parentCnt < 0) { // The parent's geometry has no key so we will have no key. fPathGenID = 0; return; } } uint32_t styleKeyFlags = 0; if (parent.knownToBeClosed()) { styleKeyFlags |= GrStyle::kClosed_KeyFlag; } int styleCnt = GrStyle::KeySize(parent.fStyle, apply, styleKeyFlags); if (styleCnt < 0) { // The style doesn't allow a key, set the path gen ID to 0 so that we fail when // we try to get a key for the shape. fPathGenID = 0; return; } fInheritedKey.reset(parentCnt + styleCnt); if (useParentGeoKey) { // This will be the geo key. parent.writeUnstyledKey(fInheritedKey.get()); } else { // This should be (geo,path_effect). memcpy(fInheritedKey.get(), parent.fInheritedKey.get(), parentCnt * sizeof(uint32_t)); } // Now turn (geo,path_effect) or (geo) into (geo,path_effect,stroke) GrStyle::WriteKey(fInheritedKey.get() + parentCnt, parent.fStyle, apply, scale, styleKeyFlags); } } GrShape::GrShape(const GrShape& that) : fType(that.fType), fStyle(that.fStyle) { switch (fType) { case Type::kEmpty: break; case Type::kRRect: fRRect = that.fRRect; fRRectDir = that.fRRectDir; fRRectStart = that.fRRectStart; fRRectIsInverted = that.fRRectIsInverted; break; case Type::kPath: fPath.set(*that.fPath.get()); fPathGenID = that.fPathGenID; break; } fInheritedKey.reset(that.fInheritedKey.count()); sk_careful_memcpy(fInheritedKey.get(), that.fInheritedKey.get(), sizeof(uint32_t) * fInheritedKey.count()); } GrShape::GrShape(const GrShape& parent, GrStyle::Apply apply, SkScalar scale) { // TODO: Add some quantization of scale for better cache performance here or leave that up // to caller? // TODO: For certain shapes and stroke params we could ignore the scale. (e.g. miter or bevel // stroke of a rect). if (!parent.style().applies() || (GrStyle::Apply::kPathEffectOnly == apply && !parent.style().pathEffect())) { fType = Type::kEmpty; *this = parent; return; } SkPathEffect* pe = parent.fStyle.pathEffect(); SkTLazy tmpPath; const GrShape* parentForKey = &parent; SkTLazy tmpParent; fType = Type::kPath; fPath.init(); if (pe) { SkPath* srcForPathEffect; if (parent.fType == Type::kPath) { srcForPathEffect = parent.fPath.get(); } else { srcForPathEffect = tmpPath.init(); parent.asPath(tmpPath.get()); } // Should we consider bounds? Would have to include in key, but it'd be nice to know // if the bounds actually modified anything before including in key. SkStrokeRec strokeRec = parent.fStyle.strokeRec(); if (!parent.fStyle.applyPathEffectToPath(fPath.get(), &strokeRec, *srcForPathEffect, scale)) { // If the path effect fails then we continue as though there was no path effect. // If the original was a rrect that we couldn't canonicalize because of the path // effect, then do so now. if (parent.fType == Type::kRRect && (parent.fRRectDir != kDefaultRRectDir || parent.fRRectStart != kDefaultRRectStart)) { SkASSERT(srcForPathEffect == tmpPath.get()); tmpPath.get()->reset(); tmpPath.get()->addRRect(parent.fRRect, kDefaultRRectDir, kDefaultRRectDir); } *fPath.get() = *srcForPathEffect; } // A path effect has access to change the res scale but we aren't expecting it to and it // would mess up our key computation. SkASSERT(scale == strokeRec.getResScale()); if (GrStyle::Apply::kPathEffectAndStrokeRec == apply && strokeRec.needToApply()) { // The intermediate shape may not be a general path. If we we're just applying // the path effect then attemptToReduceFromPath would catch it. This means that // when we subsequently applied the remaining strokeRec we would have a non-path // parent shape that would be used to determine the the stroked path's key. // We detect that case here and change parentForKey to a temporary that represents // the simpler shape so that applying both path effect and the strokerec all at // once produces the same key. tmpParent.init(*fPath.get(), GrStyle(strokeRec, nullptr)); tmpParent.get()->setInheritedKey(parent, GrStyle::Apply::kPathEffectOnly, scale); if (!tmpPath.isValid()) { tmpPath.init(); } tmpParent.get()->asPath(tmpPath.get()); SkStrokeRec::InitStyle fillOrHairline; SkAssertResult(tmpParent.get()->style().applyToPath(fPath.get(), &fillOrHairline, *tmpPath.get(), scale)); fStyle.resetToInitStyle(fillOrHairline); parentForKey = tmpParent.get(); } else { fStyle = GrStyle(strokeRec, nullptr); } } else { const SkPath* srcForParentStyle; if (parent.fType == Type::kPath) { srcForParentStyle = parent.fPath.get(); } else { srcForParentStyle = tmpPath.init(); parent.asPath(tmpPath.get()); } SkStrokeRec::InitStyle fillOrHairline; SkASSERT(parent.fStyle.applies()); SkASSERT(!parent.fStyle.pathEffect()); SkAssertResult(parent.fStyle.applyToPath(fPath.get(), &fillOrHairline, *srcForParentStyle, scale)); fStyle.resetToInitStyle(fillOrHairline); } this->attemptToSimplifyPath(); this->setInheritedKey(*parentForKey, apply, scale); } void GrShape::attemptToSimplifyPath() { SkASSERT(Type::kPath == fType); SkRect rect; if (fPath.get()->isEmpty()) { fType = Type::kEmpty; } else if (fPath.get()->isRRect(&fRRect, &fRRectDir, &fRRectStart)) { // Currently SkPath does not acknowledge that empty, rect, or oval subtypes as rrects. SkASSERT(!fRRect.isEmpty()); SkASSERT(fRRect.getType() != SkRRect::kRect_Type); SkASSERT(fRRect.getType() != SkRRect::kOval_Type); fRRectIsInverted = fPath.get()->isInverseFillType(); fType = Type::kRRect; } else if (fPath.get()->isOval(&rect, &fRRectDir, &fRRectStart)) { fRRect.setOval(rect); fRRectIsInverted = fPath.get()->isInverseFillType(); // convert from oval indexing to rrect indexiing. fRRectStart *= 2; fType = Type::kRRect; } else if (SkPathPriv::IsSimpleClosedRect(*fPath.get(), &rect, &fRRectDir, &fRRectStart)) { // When there is a path effect we restrict rect detection to the narrower API that // gives us the starting position. Otherwise, we will retry with the more aggressive // isRect(). fRRect.setRect(rect); fRRectIsInverted = fPath.get()->isInverseFillType(); // convert from rect indexing to rrect indexiing. fRRectStart *= 2; fType = Type::kRRect; } else if (!this->style().hasPathEffect()) { bool closed; if (fPath.get()->isRect(&rect, &closed, nullptr)) { if (closed || this->style().isSimpleFill()) { fRRect.setRect(rect); // Since there is no path effect the dir and start index is immaterial. fRRectDir = kDefaultRRectDir; fRRectStart = kDefaultRRectStart; // There isn't dashing so we will have to preserver inverseness. fRRectIsInverted = fPath.get()->isInverseFillType(); fType = Type::kRRect; } } } if (Type::kPath != fType) { fPath.reset(); fInheritedKey.reset(0); if (Type::kRRect == fType) { this->attemptToSimplifyRRect(); } } else { if (fInheritedKey.count() || fPath.get()->isVolatile()) { fPathGenID = 0; } else { fPathGenID = fPath.get()->getGenerationID(); } if (this->style().isSimpleFill()) { // Filled paths are treated as though all their contours were closed. // Since SkPath doesn't track individual contours, this will only close the last. :( // There is no point in closing lines, though, since they loose their line-ness. if (!fPath.get()->isLine(nullptr)) { fPath.get()->close(); fPath.get()->setIsVolatile(true); } } if (fPath.get()->isConvex()) { // There is no distinction between even/odd and non-zero winding count for convex // paths. if (fPath.get()->isInverseFillType()) { fPath.get()->setFillType(SkPath::kInverseEvenOdd_FillType); } else { fPath.get()->setFillType(SkPath::kEvenOdd_FillType); } } if (this->style().isDashed()) { // Dashing ignores inverseness (skbug.com/5421) switch (fPath.get()->getFillType()) { case SkPath::kWinding_FillType: case SkPath::kEvenOdd_FillType: break; case SkPath::kInverseWinding_FillType: fPath.get()->setFillType(SkPath::kWinding_FillType); break; case SkPath::kInverseEvenOdd_FillType: fPath.get()->setFillType(SkPath::kEvenOdd_FillType); break; } } } } void GrShape::attemptToSimplifyRRect() { SkASSERT(Type::kRRect == fType); SkASSERT(!fInheritedKey.count()); if (fRRect.isEmpty()) { fType = Type::kEmpty; return; } if (!this->style().hasPathEffect()) { fRRectDir = kDefaultRRectDir; fRRectStart = kDefaultRRectStart; } else if (fStyle.isDashed()) { // Dashing ignores the inverseness (currently). skbug.com/5421 fRRectIsInverted = false; } }