/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrResourceCache2.h" #include "GrGpuResource.h" #include "SkChecksum.h" #include "SkGr.h" #include "SkMessageBus.h" DECLARE_SKMESSAGEBUS_MESSAGE(GrResourceInvalidatedMessage); ////////////////////////////////////////////////////////////////////////////// GrScratchKey::ResourceType GrScratchKey::GenerateResourceType() { static int32_t gType = INHERITED::kInvalidDomain + 1; int32_t type = sk_atomic_inc(&gType); if (type > SK_MaxU16) { SkFAIL("Too many Resource Types"); } return static_cast(type); } GrContentKey::Domain GrContentKey::GenerateDomain() { static int32_t gDomain = INHERITED::kInvalidDomain + 1; int32_t domain = sk_atomic_inc(&gDomain); if (domain > SK_MaxU16) { SkFAIL("Too many Content Key Domains"); } return static_cast(domain); } uint32_t GrResourceKeyHash(const uint32_t* data, size_t size) { return SkChecksum::Compute(data, size); } ////////////////////////////////////////////////////////////////////////////// class GrResourceCache2::AutoValidate : ::SkNoncopyable { public: AutoValidate(GrResourceCache2* cache) : fCache(cache) { cache->validate(); } ~AutoValidate() { fCache->validate(); } private: GrResourceCache2* fCache; }; ////////////////////////////////////////////////////////////////////////////// static const int kDefaultMaxCount = 2 * (1 << 10); static const size_t kDefaultMaxSize = 96 * (1 << 20); GrResourceCache2::GrResourceCache2() : fMaxCount(kDefaultMaxCount) , fMaxBytes(kDefaultMaxSize) #if GR_CACHE_STATS , fHighWaterCount(0) , fHighWaterBytes(0) , fBudgetedHighWaterCount(0) , fBudgetedHighWaterBytes(0) #endif , fCount(0) , fBytes(0) , fBudgetedCount(0) , fBudgetedBytes(0) , fPurging(false) , fNewlyPurgableResourceWhilePurging(false) , fOverBudgetCB(NULL) , fOverBudgetData(NULL) { } GrResourceCache2::~GrResourceCache2() { this->releaseAll(); } void GrResourceCache2::setLimits(int count, size_t bytes) { fMaxCount = count; fMaxBytes = bytes; this->purgeAsNeeded(); } void GrResourceCache2::insertResource(GrGpuResource* resource) { SkASSERT(resource); SkASSERT(!resource->wasDestroyed()); SkASSERT(!this->isInCache(resource)); SkASSERT(!fPurging); fResources.addToHead(resource); size_t size = resource->gpuMemorySize(); ++fCount; fBytes += size; #if GR_CACHE_STATS fHighWaterCount = SkTMax(fCount, fHighWaterCount); fHighWaterBytes = SkTMax(fBytes, fHighWaterBytes); #endif if (resource->cacheAccess().isBudgeted()) { ++fBudgetedCount; fBudgetedBytes += size; #if GR_CACHE_STATS fBudgetedHighWaterCount = SkTMax(fBudgetedCount, fBudgetedHighWaterCount); fBudgetedHighWaterBytes = SkTMax(fBudgetedBytes, fBudgetedHighWaterBytes); #endif } if (resource->cacheAccess().getScratchKey().isValid()) { SkASSERT(!resource->cacheAccess().isWrapped()); fScratchMap.insert(resource->cacheAccess().getScratchKey(), resource); } this->purgeAsNeeded(); } void GrResourceCache2::removeResource(GrGpuResource* resource) { SkASSERT(this->isInCache(resource)); size_t size = resource->gpuMemorySize(); --fCount; fBytes -= size; if (resource->cacheAccess().isBudgeted()) { --fBudgetedCount; fBudgetedBytes -= size; } fResources.remove(resource); if (resource->cacheAccess().getScratchKey().isValid()) { fScratchMap.remove(resource->cacheAccess().getScratchKey(), resource); } if (resource->cacheAccess().getContentKey().isValid()) { fContentHash.remove(resource->cacheAccess().getContentKey()); } this->validate(); } void GrResourceCache2::abandonAll() { AutoValidate av(this); SkASSERT(!fPurging); while (GrGpuResource* head = fResources.head()) { SkASSERT(!head->wasDestroyed()); head->cacheAccess().abandon(); // abandon should have already removed this from the list. SkASSERT(head != fResources.head()); } SkASSERT(!fScratchMap.count()); SkASSERT(!fContentHash.count()); SkASSERT(!fCount); SkASSERT(!fBytes); SkASSERT(!fBudgetedCount); SkASSERT(!fBudgetedBytes); } void GrResourceCache2::releaseAll() { AutoValidate av(this); SkASSERT(!fPurging); while (GrGpuResource* head = fResources.head()) { SkASSERT(!head->wasDestroyed()); head->cacheAccess().release(); // release should have already removed this from the list. SkASSERT(head != fResources.head()); } SkASSERT(!fScratchMap.count()); SkASSERT(!fCount); SkASSERT(!fBytes); SkASSERT(!fBudgetedCount); SkASSERT(!fBudgetedBytes); } class GrResourceCache2::AvailableForScratchUse { public: AvailableForScratchUse(bool rejectPendingIO) : fRejectPendingIO(rejectPendingIO) { } bool operator()(const GrGpuResource* resource) const { if (resource->internalHasRef() || !resource->cacheAccess().isScratch()) { return false; } return !fRejectPendingIO || !resource->internalHasPendingIO(); } private: bool fRejectPendingIO; }; GrGpuResource* GrResourceCache2::findAndRefScratchResource(const GrScratchKey& scratchKey, uint32_t flags) { SkASSERT(!fPurging); SkASSERT(scratchKey.isValid()); GrGpuResource* resource; if (flags & (kPreferNoPendingIO_ScratchFlag | kRequireNoPendingIO_ScratchFlag)) { resource = fScratchMap.find(scratchKey, AvailableForScratchUse(true)); if (resource) { resource->ref(); this->makeResourceMRU(resource); this->validate(); return resource; } else if (flags & kRequireNoPendingIO_ScratchFlag) { return NULL; } // TODO: fail here when kPrefer is specified, we didn't find a resource without pending io, // but there is still space in our budget for the resource. } resource = fScratchMap.find(scratchKey, AvailableForScratchUse(false)); if (resource) { resource->ref(); this->makeResourceMRU(resource); this->validate(); } return resource; } void GrResourceCache2::willRemoveScratchKey(const GrGpuResource* resource) { SkASSERT(resource->cacheAccess().isScratch()); fScratchMap.remove(resource->cacheAccess().getScratchKey(), resource); } bool GrResourceCache2::didSetContentKey(GrGpuResource* resource) { SkASSERT(!fPurging); SkASSERT(resource); SkASSERT(this->isInCache(resource)); SkASSERT(resource->cacheAccess().getContentKey().isValid()); GrGpuResource* res = fContentHash.find(resource->cacheAccess().getContentKey()); if (NULL != res) { return false; } fContentHash.add(resource); this->validate(); return true; } void GrResourceCache2::makeResourceMRU(GrGpuResource* resource) { SkASSERT(!fPurging); SkASSERT(resource); SkASSERT(this->isInCache(resource)); fResources.remove(resource); fResources.addToHead(resource); } void GrResourceCache2::notifyPurgable(GrGpuResource* resource) { SkASSERT(resource); SkASSERT(this->isInCache(resource)); SkASSERT(resource->isPurgable()); // We can't purge if in the middle of purging because purge is iterating. Instead record // that additional resources became purgable. if (fPurging) { fNewlyPurgableResourceWhilePurging = true; return; } bool release = false; if (resource->cacheAccess().isWrapped()) { release = true; } else if (!resource->cacheAccess().isBudgeted()) { // Check whether this resource could still be used as a scratch resource. if (resource->cacheAccess().getScratchKey().isValid()) { // We won't purge an existing resource to make room for this one. bool underBudget = fBudgetedCount < fMaxCount && fBudgetedBytes + resource->gpuMemorySize() <= fMaxBytes; if (underBudget) { resource->cacheAccess().makeBudgeted(); } else { release = true; } } else { release = true; } } else { // Purge the resource if we're over budget bool overBudget = fBudgetedCount > fMaxCount || fBudgetedBytes > fMaxBytes; // Also purge if the resource has neither a valid scratch key nor a content key. bool noKey = !resource->cacheAccess().getScratchKey().isValid() && !resource->cacheAccess().getContentKey().isValid(); if (overBudget || noKey) { release = true; } } if (release) { SkDEBUGCODE(int beforeCount = fCount;) resource->cacheAccess().release(); // We should at least free this resource, perhaps dependent resources as well. SkASSERT(fCount < beforeCount); } this->validate(); } void GrResourceCache2::didChangeGpuMemorySize(const GrGpuResource* resource, size_t oldSize) { // SkASSERT(!fPurging); GrPathRange increases size during flush. :( SkASSERT(resource); SkASSERT(this->isInCache(resource)); ptrdiff_t delta = resource->gpuMemorySize() - oldSize; fBytes += delta; #if GR_CACHE_STATS fHighWaterBytes = SkTMax(fBytes, fHighWaterBytes); #endif if (resource->cacheAccess().isBudgeted()) { fBudgetedBytes += delta; #if GR_CACHE_STATS fBudgetedHighWaterBytes = SkTMax(fBudgetedBytes, fBudgetedHighWaterBytes); #endif } this->purgeAsNeeded(); this->validate(); } void GrResourceCache2::didChangeBudgetStatus(GrGpuResource* resource) { SkASSERT(!fPurging); SkASSERT(resource); SkASSERT(this->isInCache(resource)); size_t size = resource->gpuMemorySize(); if (resource->cacheAccess().isBudgeted()) { ++fBudgetedCount; fBudgetedBytes += size; #if GR_CACHE_STATS fBudgetedHighWaterBytes = SkTMax(fBudgetedBytes, fBudgetedHighWaterBytes); fBudgetedHighWaterCount = SkTMax(fBudgetedCount, fBudgetedHighWaterCount); #endif this->purgeAsNeeded(); } else { --fBudgetedCount; fBudgetedBytes -= size; } this->validate(); } void GrResourceCache2::internalPurgeAsNeeded() { SkASSERT(!fPurging); SkASSERT(!fNewlyPurgableResourceWhilePurging); SkASSERT(fBudgetedCount > fMaxCount || fBudgetedBytes > fMaxBytes); fPurging = true; bool overBudget = true; do { fNewlyPurgableResourceWhilePurging = false; ResourceList::Iter resourceIter; GrGpuResource* resource = resourceIter.init(fResources, ResourceList::Iter::kTail_IterStart); while (resource) { GrGpuResource* prev = resourceIter.prev(); if (resource->isPurgable()) { resource->cacheAccess().release(); } resource = prev; if (fBudgetedCount <= fMaxCount && fBudgetedBytes <= fMaxBytes) { overBudget = false; resource = NULL; } } if (!fNewlyPurgableResourceWhilePurging && overBudget && fOverBudgetCB) { // Despite the purge we're still over budget. Call our over budget callback. (*fOverBudgetCB)(fOverBudgetData); } } while (overBudget && fNewlyPurgableResourceWhilePurging); fNewlyPurgableResourceWhilePurging = false; fPurging = false; this->validate(); } void GrResourceCache2::purgeAllUnlocked() { SkASSERT(!fPurging); SkASSERT(!fNewlyPurgableResourceWhilePurging); fPurging = true; do { fNewlyPurgableResourceWhilePurging = false; ResourceList::Iter resourceIter; GrGpuResource* resource = resourceIter.init(fResources, ResourceList::Iter::kTail_IterStart); while (resource) { GrGpuResource* prev = resourceIter.prev(); if (resource->isPurgable()) { resource->cacheAccess().release(); } resource = prev; } if (!fNewlyPurgableResourceWhilePurging && fCount && fOverBudgetCB) { (*fOverBudgetCB)(fOverBudgetData); } } while (fNewlyPurgableResourceWhilePurging); fPurging = false; this->validate(); } #ifdef SK_DEBUG void GrResourceCache2::validate() const { // Reduce the frequency of validations for large resource counts. static SkRandom gRandom; int mask = (SkNextPow2(fCount + 1) >> 5) - 1; if (~mask && (gRandom.nextU() & mask)) { return; } size_t bytes = 0; int count = 0; int budgetedCount = 0; size_t budgetedBytes = 0; int locked = 0; int scratch = 0; int couldBeScratch = 0; int content = 0; ResourceList::Iter iter; GrGpuResource* resource = iter.init(fResources, ResourceList::Iter::kHead_IterStart); for ( ; resource; resource = iter.next()) { bytes += resource->gpuMemorySize(); ++count; if (!resource->isPurgable()) { ++locked; } if (resource->cacheAccess().isScratch()) { SkASSERT(!resource->cacheAccess().getContentKey().isValid()); ++scratch; SkASSERT(fScratchMap.countForKey(resource->cacheAccess().getScratchKey())); SkASSERT(!resource->cacheAccess().isWrapped()); } else if (resource->cacheAccess().getScratchKey().isValid()) { SkASSERT(!resource->cacheAccess().isBudgeted() || resource->cacheAccess().getContentKey().isValid()); ++couldBeScratch; SkASSERT(fScratchMap.countForKey(resource->cacheAccess().getScratchKey())); SkASSERT(!resource->cacheAccess().isWrapped()); } const GrContentKey& contentKey = resource->cacheAccess().getContentKey(); if (contentKey.isValid()) { ++content; SkASSERT(fContentHash.find(contentKey) == resource); SkASSERT(!resource->cacheAccess().isWrapped()); SkASSERT(resource->cacheAccess().isBudgeted()); } if (resource->cacheAccess().isBudgeted()) { ++budgetedCount; budgetedBytes += resource->gpuMemorySize(); } } SkASSERT(fBudgetedCount <= fCount); SkASSERT(fBudgetedBytes <= fBudgetedBytes); SkASSERT(bytes == fBytes); SkASSERT(count == fCount); SkASSERT(budgetedBytes == fBudgetedBytes); SkASSERT(budgetedCount == fBudgetedCount); #if GR_CACHE_STATS SkASSERT(fBudgetedHighWaterCount <= fHighWaterCount); SkASSERT(fBudgetedHighWaterBytes <= fHighWaterBytes); SkASSERT(bytes <= fHighWaterBytes); SkASSERT(count <= fHighWaterCount); SkASSERT(budgetedBytes <= fBudgetedHighWaterBytes); SkASSERT(budgetedCount <= fBudgetedHighWaterCount); #endif SkASSERT(content == fContentHash.count()); SkASSERT(scratch + couldBeScratch == fScratchMap.count()); // This assertion is not currently valid because we can be in recursive notifyIsPurgable() // calls. This will be fixed when subresource registration is explicit. // bool overBudget = budgetedBytes > fMaxBytes || budgetedCount > fMaxCount; // SkASSERT(!overBudget || locked == count || fPurging); } #endif #if GR_CACHE_STATS void GrResourceCache2::printStats() const { this->validate(); int locked = 0; int scratch = 0; int wrapped = 0; size_t unbudgetedSize = 0; ResourceList::Iter iter; GrGpuResource* resource = iter.init(fResources, ResourceList::Iter::kHead_IterStart); for ( ; resource; resource = iter.next()) { if (!resource->isPurgable()) { ++locked; } if (resource->cacheAccess().isScratch()) { ++scratch; } if (resource->cacheAccess().isWrapped()) { ++wrapped; } if (!resource->cacheAccess().isBudgeted()) { unbudgetedSize += resource->gpuMemorySize(); } } float countUtilization = (100.f * fBudgetedCount) / fMaxCount; float byteUtilization = (100.f * fBudgetedBytes) / fMaxBytes; SkDebugf("Budget: %d items %d bytes\n", fMaxCount, fMaxBytes); SkDebugf("\t\tEntry Count: current %d" " (%d budgeted, %d wrapped, %d locked, %d scratch %.2g%% full), high %d\n", fCount, fBudgetedCount, wrapped, locked, scratch, countUtilization, fHighWaterCount); SkDebugf("\t\tEntry Bytes: current %d (budgeted %d, %.2g%% full, %d unbudgeted) high %d\n", fBytes, fBudgetedBytes, byteUtilization, unbudgetedSize, fHighWaterBytes); } #endif