/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrResourceCache_DEFINED #define GrResourceCache_DEFINED #include "GrTypes.h" #include "GrTHashCache.h" class GrResource; // return true if acomputeHashIndex(); } GrResourceKey(uint32_t v[4]) { memcpy(fP, v, 4 * sizeof(uint32_t)); this->computeHashIndex(); } GrResourceKey(const GrResourceKey& src) { memcpy(fP, src.fP, 4 * sizeof(uint32_t)); #if GR_DEBUG this->computeHashIndex(); GrAssert(fHashIndex == src.fHashIndex); #endif fHashIndex = src.fHashIndex; } //!< returns hash value [0..kHashMask] for the key int hashIndex() const { return fHashIndex; } friend bool operator==(const GrResourceKey& a, const GrResourceKey& b) { GR_DEBUGASSERT(-1 != a.fHashIndex && -1 != b.fHashIndex); return 0 == memcmp(a.fP, b.fP, 4 * sizeof(uint32_t)); } friend bool operator!=(const GrResourceKey& a, const GrResourceKey& b) { GR_DEBUGASSERT(-1 != a.fHashIndex && -1 != b.fHashIndex); return !(a == b); } friend bool operator<(const GrResourceKey& a, const GrResourceKey& b) { RET_IF_LT_OR_GT(a.fP[0], b.fP[0]); RET_IF_LT_OR_GT(a.fP[1], b.fP[1]); RET_IF_LT_OR_GT(a.fP[2], b.fP[2]); return a.fP[3] < b.fP[3]; } uint32_t getValue32(int i) const { GrAssert(i >=0 && i < 4); return fP[i]; } private: static uint32_t rol(uint32_t x) { return (x >> 24) | (x << 8); } static uint32_t ror(uint32_t x) { return (x >> 8) | (x << 24); } static uint32_t rohalf(uint32_t x) { return (x >> 16) | (x << 16); } void computeHashIndex() { uint32_t hash = fP[0] ^ rol(fP[1]) ^ ror(fP[2]) ^ rohalf(fP[3]); // this way to mix and reduce hash to its index may have to change // depending on how many bits we allocate to the index hash ^= hash >> 16; hash ^= hash >> 8; fHashIndex = hash & kHashMask; } uint32_t fP[4]; // this is computed from the fP... fields int fHashIndex; friend class GrContext; }; /////////////////////////////////////////////////////////////////////////////// class GrResourceEntry { public: GrResource* resource() const { return fResource; } const GrResourceKey& key() const { return fKey; } #if GR_DEBUG GrResourceEntry* next() const { return fNext; } GrResourceEntry* prev() const { return fPrev; } #endif #if GR_DEBUG void validate() const; #else void validate() const {} #endif private: GrResourceEntry(const GrResourceKey& key, GrResource* resource); ~GrResourceEntry(); bool isLocked() const { return fLockCount != 0; } void lock() { ++fLockCount; } void unlock() { GrAssert(fLockCount > 0); --fLockCount; } GrResourceKey fKey; GrResource* fResource; // track if we're in use, used when we need to purge // we only purge unlocked entries int fLockCount; // we're a dlinklist GrResourceEntry* fPrev; GrResourceEntry* fNext; friend class GrResourceCache; }; /////////////////////////////////////////////////////////////////////////////// #include "GrTHashCache.h" /** * Cache of GrResource objects. * * These have a corresponding GrResourceKey, built from 128bits identifying the * resource. * * The cache stores the entries in a double-linked list, which is its LRU. * When an entry is "locked" (i.e. given to the caller), it is moved to the * head of the list. If/when we must purge some of the entries, we walk the * list backwards from the tail, since those are the least recently used. * * For fast searches, we maintain a sorted array (based on the GrResourceKey) * which we can bsearch. When a new entry is added, it is inserted into this * array. * * For even faster searches, a hash is computed from the Key. If there is * a collision between two keys with the same hash, we fall back on the * bsearch, and update the hash to reflect the most recent Key requested. */ class GrResourceCache { public: GrResourceCache(int maxCount, size_t maxBytes); ~GrResourceCache(); /** * Return the current resource cache limits. * * @param maxResource If non-null, returns maximum number of resources * that can be held in the cache. * @param maxBytes If non-null, returns maximum number of bytes of * gpu memory that can be held in the cache. */ void getLimits(int* maxResources, size_t* maxBytes) const; /** * Specify the resource cache limits. If the current cache exceeds either * of these, it will be purged (LRU) to keep the cache within these limits. * * @param maxResources The maximum number of resources that can be held in * the cache. * @param maxBytes The maximum number of bytes of resource memory that * can be held in the cache. */ void setLimits(int maxResource, size_t maxResourceBytes); /** * Returns the number of bytes consumed by cached resources. */ size_t getCachedResourceBytes() const { return fEntryBytes; } /** * Controls whether locks should be nestable or not. */ enum LockType { kNested_LockType, kSingle_LockType, }; /** * Search for an entry with the same Key. If found, "lock" it and return it. * If not found, return null. */ GrResourceEntry* findAndLock(const GrResourceKey&, LockType style); /** * Create a new cache entry, based on the provided key and resource, and * return it. * * Ownership of the resource is transferred to the resource cache, * which will unref() it when it is purged or deleted. */ GrResourceEntry* createAndLock(const GrResourceKey&, GrResource*); /** * Create a new cache entry, based on the provided key and resource. * * Ownership of the resource is transferred to the resource cache, * which will unref() it when it is purged or deleted. * * Currently this entry point is only intended for textures "detached" * from an AutoScratchTexture object. */ void attach(const GrResourceKey& key, GrResource* resource); /** * Determines if the cache contains an entry matching a key. If a matching * entry exists but was detached then it will not be found. */ bool hasKey(const GrResourceKey& key) const; /** * Detach removes an entry from the cache. This prevents the entry from * being found by a subsequent findAndLock() until it is reattached. The * entry still counts against the cache's budget and should be reattached * when exclusive access is no longer needed. */ void detach(GrResourceEntry*); void freeEntry(GrResourceEntry* entry); /** * Reattaches a resource to the cache and unlocks it. Allows it to be found * by a subsequent findAndLock or be purged (provided its lock count is * now 0.) */ void reattachAndUnlock(GrResourceEntry*); /** * When done with an entry, call unlock(entry) on it, which returns it to * a purgable state. */ void unlock(GrResourceEntry*); void removeAll(); #if GR_DEBUG void validate() const; #else void validate() const {} #endif private: void internalDetach(GrResourceEntry*, bool); void attachToHead(GrResourceEntry*, bool); void purgeAsNeeded(); class Key; GrTHashTable fCache; // manage the dlink list GrResourceEntry* fHead; GrResourceEntry* fTail; // our budget, used in purgeAsNeeded() int fMaxCount; size_t fMaxBytes; // our current stats, related to our budget int fEntryCount; int fUnlockedEntryCount; size_t fEntryBytes; int fClientDetachedCount; size_t fClientDetachedBytes; // prevents recursive purging bool fPurging; GrResourceEntry* create(const GrResourceKey& key, GrResource* resource, bool lock, bool clientReattach); }; /////////////////////////////////////////////////////////////////////////////// #if GR_DEBUG class GrAutoResourceCacheValidate { public: GrAutoResourceCacheValidate(GrResourceCache* cache) : fCache(cache) { cache->validate(); } ~GrAutoResourceCacheValidate() { fCache->validate(); } private: GrResourceCache* fCache; }; #else class GrAutoResourceCacheValidate { public: GrAutoResourceCacheValidate(GrResourceCache*) {} }; #endif #endif