/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrRODrawState_DEFINED #define GrRODrawState_DEFINED #include "GrStencil.h" #include "GrEffectStage.h" #include "SkMatrix.h" class GrDrawTargetCaps; class GrPaint; class GrRenderTarget; class GrTexture; /** * Read-only base class for GrDrawState. This class contains all the necessary data to represent a * canonical DrawState. All methods in the class are const, thus once created the data in the class * cannot be changed. */ class GrRODrawState : public SkRefCnt { public: SK_DECLARE_INST_COUNT(GrRODrawState) /////////////////////////////////////////////////////////////////////////// /// @name Vertex Attributes //// enum { kMaxVertexAttribCnt = kLast_GrVertexAttribBinding + 4, }; const GrVertexAttrib* getVertexAttribs() const { return fVAPtr; } int getVertexAttribCount() const { return fVACount; } size_t getVertexStride() const { return fVAStride; } /** * Getters for index into getVertexAttribs() for particular bindings. -1 is returned if the * binding does not appear in the current attribs. These bindings should appear only once in * the attrib array. */ int positionAttributeIndex() const { return fFixedFunctionVertexAttribIndices[kPosition_GrVertexAttribBinding]; } int localCoordAttributeIndex() const { return fFixedFunctionVertexAttribIndices[kLocalCoord_GrVertexAttribBinding]; } int colorVertexAttributeIndex() const { return fFixedFunctionVertexAttribIndices[kColor_GrVertexAttribBinding]; } int coverageVertexAttributeIndex() const { return fFixedFunctionVertexAttribIndices[kCoverage_GrVertexAttribBinding]; } bool hasLocalCoordAttribute() const { return -1 != fFixedFunctionVertexAttribIndices[kLocalCoord_GrVertexAttribBinding]; } bool hasColorVertexAttribute() const { return -1 != fFixedFunctionVertexAttribIndices[kColor_GrVertexAttribBinding]; } bool hasCoverageVertexAttribute() const { return -1 != fFixedFunctionVertexAttribIndices[kCoverage_GrVertexAttribBinding]; } bool validateVertexAttribs() const; /// @} /** * Determines whether the output coverage is guaranteed to be one for all pixels hit by a draw. */ bool hasSolidCoverage() const; /// @} /////////////////////////////////////////////////////////////////////////// /// @name Color //// GrColor getColor() const { return fColor; } /// @} /////////////////////////////////////////////////////////////////////////// /// @name Coverage //// uint8_t getCoverage() const { return fCoverage; } GrColor getCoverageColor() const { return GrColorPackRGBA(fCoverage, fCoverage, fCoverage, fCoverage); } /// @} /////////////////////////////////////////////////////////////////////////// /// @name Effect Stages /// Each stage hosts a GrEffect. The effect produces an output color or coverage in the fragment /// shader. Its inputs are the output from the previous stage as well as some variables /// available to it in the fragment and vertex shader (e.g. the vertex position, the dst color, /// the fragment position, local coordinates). /// /// The stages are divided into two sets, color-computing and coverage-computing. The final /// color stage produces the final pixel color. The coverage-computing stages function exactly /// as the color-computing but the output of the final coverage stage is treated as a fractional /// pixel coverage rather than as input to the src/dst color blend step. /// /// The input color to the first color-stage is either the constant color or interpolated /// per-vertex colors. The input to the first coverage stage is either a constant coverage /// (usually full-coverage) or interpolated per-vertex coverage. /// /// See the documentation of kCoverageDrawing_StateBit for information about disabling the /// the color / coverage distinction. //// int numColorStages() const { return fColorStages.count(); } int numCoverageStages() const { return fCoverageStages.count(); } int numTotalStages() const { return this->numColorStages() + this->numCoverageStages(); } const GrEffectStage& getColorStage(int stageIdx) const { return fColorStages[stageIdx]; } const GrEffectStage& getCoverageStage(int stageIdx) const { return fCoverageStages[stageIdx]; } /** * Checks whether any of the effects will read the dst pixel color. */ bool willEffectReadDstColor() const; /// @} /////////////////////////////////////////////////////////////////////////// /// @name Blending //// GrBlendCoeff getSrcBlendCoeff() const { return fSrcBlend; } GrBlendCoeff getDstBlendCoeff() const { return fDstBlend; } void getDstBlendCoeff(GrBlendCoeff* srcBlendCoeff, GrBlendCoeff* dstBlendCoeff) const { *srcBlendCoeff = fSrcBlend; *dstBlendCoeff = fDstBlend; } /** * Retrieves the last value set by setBlendConstant() * @return the blending constant value */ GrColor getBlendConstant() const { return fBlendConstant; } /** * Determines whether multiplying the computed per-pixel color by the pixel's fractional * coverage before the blend will give the correct final destination color. In general it * will not as coverage is applied after blending. */ bool canTweakAlphaForCoverage() const; /** * Optimizations for blending / coverage to that can be applied based on the current state. */ enum BlendOptFlags { /** * No optimization */ kNone_BlendOpt = 0, /** * Don't draw at all */ kSkipDraw_BlendOptFlag = 0x1, /** * The coverage value does not have to be computed separately from alpha, the output * color can be the modulation of the two. */ kCoverageAsAlpha_BlendOptFlag = 0x2, /** * Instead of emitting a src color, emit coverage in the alpha channel and r,g,b are * "don't cares". */ kEmitCoverage_BlendOptFlag = 0x4, /** * Emit transparent black instead of the src color, no need to compute coverage. */ kEmitTransBlack_BlendOptFlag = 0x8, /** * Flag used to invalidate the cached BlendOptFlags, OptSrcCoeff, and OptDstCoeff cached by * the get BlendOpts function. */ kInvalid_BlendOptFlag = 1 << 31, }; GR_DECL_BITFIELD_OPS_FRIENDS(BlendOptFlags); /// @} /////////////////////////////////////////////////////////////////////////// /// @name View Matrix //// /** * Retrieves the current view matrix * @return the current view matrix. */ const SkMatrix& getViewMatrix() const { return fViewMatrix; } /** * Retrieves the inverse of the current view matrix. * * If the current view matrix is invertible, return true, and if matrix * is non-null, copy the inverse into it. If the current view matrix is * non-invertible, return false and ignore the matrix parameter. * * @param matrix if not null, will receive a copy of the current inverse. */ bool getViewInverse(SkMatrix* matrix) const { // TODO: determine whether we really need to leave matrix unmodified // at call sites when inversion fails. SkMatrix inverse; if (fViewMatrix.invert(&inverse)) { if (matrix) { *matrix = inverse; } return true; } return false; } /// @} /////////////////////////////////////////////////////////////////////////// /// @name Render Target //// /** * Retrieves the currently set render-target. * * @return The currently set render target. */ const GrRenderTarget* getRenderTarget() const { return fRenderTarget.get(); } GrRenderTarget* getRenderTarget() { return fRenderTarget.get(); } /// @} /////////////////////////////////////////////////////////////////////////// /// @name Stencil //// const GrStencilSettings& getStencil() const { return fStencilSettings; } /// @} /////////////////////////////////////////////////////////////////////////// /// @name State Flags //// /** * Flags that affect rendering. Controlled using enable/disableState(). All * default to disabled. */ enum StateBits { /** * Perform dithering. TODO: Re-evaluate whether we need this bit */ kDither_StateBit = 0x01, /** * Perform HW anti-aliasing. This means either HW FSAA, if supported by the render target, * or smooth-line rendering if a line primitive is drawn and line smoothing is supported by * the 3D API. */ kHWAntialias_StateBit = 0x02, /** * Draws will respect the clip, otherwise the clip is ignored. */ kClip_StateBit = 0x04, /** * Disables writing to the color buffer. Useful when performing stencil * operations. */ kNoColorWrites_StateBit = 0x08, /** * Usually coverage is applied after color blending. The color is blended using the coeffs * specified by setBlendFunc(). The blended color is then combined with dst using coeffs * of src_coverage, 1-src_coverage. Sometimes we are explicitly drawing a coverage mask. In * this case there is no distinction between coverage and color and the caller needs direct * control over the blend coeffs. When set, there will be a single blend step controlled by * setBlendFunc() which will use coverage*color as the src color. */ kCoverageDrawing_StateBit = 0x10, // Users of the class may add additional bits to the vector kDummyStateBit, kLastPublicStateBit = kDummyStateBit-1, }; bool isStateFlagEnabled(uint32_t stateBit) const { return 0 != (stateBit & fFlagBits); } bool isDitherState() const { return 0 != (fFlagBits & kDither_StateBit); } bool isHWAntialiasState() const { return 0 != (fFlagBits & kHWAntialias_StateBit); } bool isClipState() const { return 0 != (fFlagBits & kClip_StateBit); } bool isColorWriteDisabled() const { return 0 != (fFlagBits & kNoColorWrites_StateBit); } bool isCoverageDrawing() const { return 0 != (fFlagBits & kCoverageDrawing_StateBit); } /// @} /////////////////////////////////////////////////////////////////////////// /// @name Face Culling //// enum DrawFace { kInvalid_DrawFace = -1, kBoth_DrawFace, kCCW_DrawFace, kCW_DrawFace, }; /** * Gets whether the target is drawing clockwise, counterclockwise, * or both faces. * @return the current draw face(s). */ DrawFace getDrawFace() const { return fDrawFace; } /// @} /////////////////////////////////////////////////////////////////////////// /** Return type for CombineIfPossible. */ enum CombinedState { /** The GrDrawStates cannot be combined. */ kIncompatible_CombinedState, /** Either draw state can be used in place of the other. */ kAOrB_CombinedState, /** Use the first draw state. */ kA_CombinedState, /** Use the second draw state. */ kB_CombinedState, }; protected: bool isEqual(const GrRODrawState& that) const; // These fields are roughly sorted by decreasing likelihood of being different in op== SkAutoTUnref fRenderTarget; GrColor fColor; SkMatrix fViewMatrix; GrColor fBlendConstant; uint32_t fFlagBits; const GrVertexAttrib* fVAPtr; int fVACount; size_t fVAStride; GrStencilSettings fStencilSettings; uint8_t fCoverage; DrawFace fDrawFace; GrBlendCoeff fSrcBlend; GrBlendCoeff fDstBlend; typedef SkSTArray<4, GrEffectStage> EffectStageArray; EffectStageArray fColorStages; EffectStageArray fCoverageStages; mutable GrBlendCoeff fOptSrcBlend; mutable GrBlendCoeff fOptDstBlend; mutable BlendOptFlags fBlendOptFlags; // This is simply a different representation of info in fVertexAttribs and thus does // not need to be compared in op==. int fFixedFunctionVertexAttribIndices[kGrFixedFunctionVertexAttribBindingCnt]; private: typedef SkRefCnt INHERITED; }; GR_MAKE_BITFIELD_OPS(GrRODrawState::BlendOptFlags); #endif