/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrProgramDesc_DEFINED #define GrProgramDesc_DEFINED #include "GrColor.h" #include "GrTypesPriv.h" #include "SkOpts.h" #include "SkTArray.h" #include "SkTo.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" class GrShaderCaps; class GrPipeline; class GrPrimitiveProcessor; /** This class describes a program to generate. It also serves as a program cache key */ class GrProgramDesc { public: // Creates an uninitialized key that must be populated by GrGpu::buildProgramDesc() GrProgramDesc() {} /** * Builds a program descriptor. Before the descriptor can be used, the client must call finalize * on the returned GrProgramDesc. * * @param GrPrimitiveProcessor The geometry * @param hasPointSize Controls whether the shader will output a point size. * @param GrPipeline The optimized drawstate. The descriptor will represent a program * which this optstate can use to draw with. The optstate contains * general draw information, as well as the specific color, geometry, * and coverage stages which will be used to generate the GL Program for * this optstate. * @param GrShaderCaps Capabilities of the shading language. * @param GrProgramDesc The built and finalized descriptor **/ static bool Build(GrProgramDesc*, const GrPrimitiveProcessor&, bool hasPointSize, const GrPipeline&, const GrShaderCaps&); // Returns this as a uint32_t array to be used as a key in the program cache. const uint32_t* asKey() const { return reinterpret_cast(fKey.begin()); } // Gets the number of bytes in asKey(). It will be a 4-byte aligned value. When comparing two // keys the size of either key can be used with memcmp() since the lengths themselves begin the // keys and thus the memcmp will exit early if the keys are of different lengths. uint32_t keyLength() const { return *this->atOffset(); } // Gets the a checksum of the key. Can be used as a hash value for a fast lookup in a cache. uint32_t getChecksum() const { return *this->atOffset(); } GrProgramDesc& operator= (const GrProgramDesc& other) { uint32_t keyLength = other.keyLength(); fKey.reset(SkToInt(keyLength)); memcpy(fKey.begin(), other.fKey.begin(), keyLength); return *this; } bool operator== (const GrProgramDesc& that) const { SkASSERT(SkIsAlign4(this->keyLength())); int l = this->keyLength() >> 2; const uint32_t* aKey = this->asKey(); const uint32_t* bKey = that.asKey(); for (int i = 0; i < l; ++i) { if (aKey[i] != bKey[i]) { return false; } } return true; } bool operator!= (const GrProgramDesc& other) const { return !(*this == other); } void setSurfaceOriginKey(int key) { KeyHeader* header = this->atOffset(); header->fSurfaceOriginKey = key; } static bool Less(const GrProgramDesc& a, const GrProgramDesc& b) { SkASSERT(SkIsAlign4(a.keyLength())); int l = a.keyLength() >> 2; const uint32_t* aKey = a.asKey(); const uint32_t* bKey = b.asKey(); for (int i = 0; i < l; ++i) { if (aKey[i] != bKey[i]) { return aKey[i] < bKey[i] ? true : false; } } return false; } struct KeyHeader { // Set to uniquely idenitify any swizzling of the shader's output color(s). uint8_t fOutputSwizzle; uint8_t fColorFragmentProcessorCnt; // Can be packed into 4 bits if required. uint8_t fCoverageFragmentProcessorCnt; // Set to uniquely identify the rt's origin, or 0 if the shader does not require this info. uint8_t fSurfaceOriginKey : 2; bool fSnapVerticesToPixelCenters : 1; bool fHasPointSize : 1; uint8_t fPad : 4; }; GR_STATIC_ASSERT(sizeof(KeyHeader) == 4); // This should really only be used internally, base classes should return their own headers const KeyHeader& header() const { return *this->atOffset(); } void finalize() { int keyLength = fKey.count(); SkASSERT(0 == (keyLength % 4)); *(this->atOffset()) = SkToU32(keyLength); uint32_t* checksum = this->atOffset(); *checksum = 0; // We'll hash through these bytes, so make sure they're initialized. *checksum = SkOpts::hash(fKey.begin(), keyLength); } protected: template T* atOffset() { return reinterpret_cast(reinterpret_cast(fKey.begin()) + OFFSET); } template const T* atOffset() const { return reinterpret_cast(reinterpret_cast(fKey.begin()) + OFFSET); } // The key, stored in fKey, is composed of four parts: // 1. uint32_t for total key length. // 2. uint32_t for a checksum. // 3. Header struct defined above. // 4. A Backend specific payload which includes the per-processor keys. enum KeyOffsets { // Part 1. kLengthOffset = 0, // Part 2. kChecksumOffset = kLengthOffset + sizeof(uint32_t), // Part 3. kHeaderOffset = kChecksumOffset + sizeof(uint32_t), kHeaderSize = SkAlign4(sizeof(KeyHeader)), // Part 4. // This is the offset into the backenend specific part of the key, which includes // per-processor keys. kProcessorKeysOffset = kHeaderOffset + kHeaderSize, }; enum { kMaxPreallocProcessors = 8, kIntsPerProcessor = 4, // This is an overestimate of the average effect key size. kPreAllocSize = kHeaderOffset + kHeaderSize + kMaxPreallocProcessors * sizeof(uint32_t) * kIntsPerProcessor, }; SkSTArray& key() { return fKey; } const SkSTArray& key() const { return fKey; } private: SkSTArray fKey; }; #endif