/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrProgramDesc_DEFINED #define GrProgramDesc_DEFINED #include "GrBackendProcessorFactory.h" #include "GrColor.h" #include "GrTypesPriv.h" #include "SkChecksum.h" class GrGpuGL; /** This class describes a program to generate. It also serves as a program cache key. Very little of this is GL-specific. The GL-specific parts could be factored out into a subclass. */ class GrProgramDesc { public: // Creates an uninitialized key that must be populated by GrGpu::buildProgramDesc() GrProgramDesc() {} // Returns this as a uint32_t array to be used as a key in the program cache. const uint32_t* asKey() const { return reinterpret_cast(fKey.begin()); } // Gets the number of bytes in asKey(). It will be a 4-byte aligned value. When comparing two // keys the size of either key can be used with memcmp() since the lengths themselves begin the // keys and thus the memcmp will exit early if the keys are of different lengths. uint32_t keyLength() const { return *this->atOffset(); } // Gets the a checksum of the key. Can be used as a hash value for a fast lookup in a cache. uint32_t getChecksum() const { return *this->atOffset(); } GrProgramDesc& operator= (const GrProgramDesc& other) { size_t keyLength = other.keyLength(); fKey.reset(keyLength); memcpy(fKey.begin(), other.fKey.begin(), keyLength); return *this; } bool operator== (const GrProgramDesc& other) const { // The length is masked as a hint to the compiler that the address will be 4 byte aligned. return 0 == memcmp(this->asKey(), other.asKey(), this->keyLength() & ~0x3); } bool operator!= (const GrProgramDesc& other) const { return !(*this == other); } static bool Less(const GrProgramDesc& a, const GrProgramDesc& b) { return memcmp(a.asKey(), b.asKey(), a.keyLength() & ~0x3) < 0; } /////////////////////////////////////////////////////////////////////////// /// @name Stage Output Types //// enum PrimaryOutputType { // Modulate color and coverage, write result as the color output. kModulate_PrimaryOutputType, // Combines the coverage, dst, and color as coverage * color + (1 - coverage) * dst. This // can only be set if fDstReadKey is non-zero. kCombineWithDst_PrimaryOutputType, kPrimaryOutputTypeCnt, }; enum SecondaryOutputType { // There is no secondary output kNone_SecondaryOutputType, // Writes coverage as the secondary output. Only set if dual source blending is supported // and primary output is kModulate. kCoverage_SecondaryOutputType, // Writes coverage * (1 - colorA) as the secondary output. Only set if dual source blending // is supported and primary output is kModulate. kCoverageISA_SecondaryOutputType, // Writes coverage * (1 - colorRGBA) as the secondary output. Only set if dual source // blending is supported and primary output is kModulate. kCoverageISC_SecondaryOutputType, kSecondaryOutputTypeCnt, }; // Specifies where the initial color comes from before the stages are applied. enum ColorInput { kAllOnes_ColorInput, kAttribute_ColorInput, kUniform_ColorInput, kColorInputCnt }; struct KeyHeader { uint8_t fDstReadKey; // set by GrGLShaderBuilder if there // are effects that must read the dst. // Otherwise, 0. uint8_t fFragPosKey; // set by GrGLShaderBuilder if there are // effects that read the fragment position. // Otherwise, 0. SkBool8 fEmitsPointSize; ColorInput fColorInput : 8; ColorInput fCoverageInput : 8; PrimaryOutputType fPrimaryOutputType : 8; SecondaryOutputType fSecondaryOutputType : 8; SkBool8 fHasGeometryProcessor; int8_t fColorEffectCnt; int8_t fCoverageEffectCnt; }; bool hasGeometryProcessor() const { return SkToBool(this->header().fHasGeometryProcessor); } int numColorEffects() const { return this->header().fColorEffectCnt; } int numCoverageEffects() const { return this->header().fCoverageEffectCnt; } int numTotalEffects() const { return this->numColorEffects() + this->numCoverageEffects(); } // This should really only be used internally, base classes should return their own headers const KeyHeader& header() const { return *this->atOffset(); } // A struct to communicate descriptor information to the program descriptor builder struct DescInfo { // TODO when GPs control uniform / attribute handling of color / coverage, then we can // clean this up bool fHasVertexColor; bool fHasVertexCoverage; // These flags are needed to protect the code from creating an unused uniform color/coverage // which will cause shader compiler errors. bool fInputColorIsUsed; bool fInputCoverageIsUsed; // These flags give aggregated info on the processor stages that are used when building // programs. bool fReadsDst; bool fReadsFragPosition; bool fRequiresLocalCoordAttrib; // Fragment shader color outputs GrProgramDesc::PrimaryOutputType fPrimaryOutputType : 8; GrProgramDesc::SecondaryOutputType fSecondaryOutputType : 8; }; private: template T* atOffset() { return reinterpret_cast(reinterpret_cast(fKey.begin()) + OFFSET); } template const T* atOffset() const { return reinterpret_cast(reinterpret_cast(fKey.begin()) + OFFSET); } void finalize() { int keyLength = fKey.count(); SkASSERT(0 == (keyLength % 4)); *(this->atOffset()) = SkToU32(keyLength); uint32_t* checksum = this->atOffset(); *checksum = 0; *checksum = SkChecksum::Compute(reinterpret_cast(fKey.begin()), keyLength); } // The key, stored in fKey, is composed of four parts: // 1. uint32_t for total key length. // 2. uint32_t for a checksum. // 3. Header struct defined above. Also room for extensions to the header // 4. A Backend specific payload. Room is preallocated for this enum KeyOffsets { // Part 1. kLengthOffset = 0, // Part 2. kChecksumOffset = kLengthOffset + sizeof(uint32_t), // Part 3. kHeaderOffset = kChecksumOffset + sizeof(uint32_t), kHeaderSize = SkAlign4(2 * sizeof(KeyHeader)), }; enum { kMaxPreallocProcessors = 8, kIntsPerProcessor = 4, // This is an overestimate of the average effect key size. kPreAllocSize = kHeaderOffset + kHeaderSize + kMaxPreallocProcessors * sizeof(uint32_t) * kIntsPerProcessor, }; SkSTArray fKey; friend class GrGLProgramDescBuilder; }; #endif