/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrProgramDesc.h" #include "GrPipeline.h" #include "GrPrimitiveProcessor.h" #include "GrProcessor.h" #include "GrRenderTargetPriv.h" #include "GrShaderCaps.h" #include "GrTexturePriv.h" #include "SkChecksum.h" #include "SkTo.h" #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" enum { kSamplerOrImageTypeKeyBits = 4 }; static inline uint16_t texture_type_key(GrTextureType type) { int value = UINT16_MAX; switch (type) { case GrTextureType::k2D: value = 0; break; case GrTextureType::kExternal: value = 1; break; case GrTextureType::kRectangle: value = 2; break; } SkASSERT((value & ((1 << kSamplerOrImageTypeKeyBits) - 1)) == value); return SkToU16(value); } static uint16_t sampler_key(GrTextureType textureType, GrPixelConfig config, const GrShaderCaps& caps) { int samplerTypeKey = texture_type_key(textureType); GR_STATIC_ASSERT(1 == sizeof(caps.configTextureSwizzle(config).asKey())); return SkToU16(samplerTypeKey | caps.configTextureSwizzle(config).asKey() << kSamplerOrImageTypeKeyBits | (GrSLSamplerPrecision(config) << (8 + kSamplerOrImageTypeKeyBits))); } static void add_sampler_and_image_keys(GrProcessorKeyBuilder* b, const GrResourceIOProcessor& proc, const GrShaderCaps& caps) { int numTextureSamplers = proc.numTextureSamplers(); // Need two bytes per key. int word32Count = (numTextureSamplers + 1) / 2; if (0 == word32Count) { return; } uint16_t* k16 = reinterpret_cast(b->add32n(word32Count)); int j = 0; for (int i = 0; i < numTextureSamplers; ++i, ++j) { const GrResourceIOProcessor::TextureSampler& sampler = proc.textureSampler(i); const GrTexture* tex = sampler.peekTexture(); k16[j] = sampler_key(tex->texturePriv().textureType(), tex->config(), caps); } // zero the last 16 bits if the number of uniforms for samplers is odd. if (numTextureSamplers & 0x1) { k16[numTextureSamplers] = 0; } } /** * A function which emits a meta key into the key builder. This is required because shader code may * be dependent on properties of the effect that the effect itself doesn't use * in its key (e.g. the pixel format of textures used). So we create a meta-key for * every effect using this function. It is also responsible for inserting the effect's class ID * which must be different for every GrProcessor subclass. It can fail if an effect uses too many * transforms, etc, for the space allotted in the meta-key. NOTE, both FPs and GPs share this * function because it is hairy, though FPs do not have attribs, and GPs do not have transforms */ static bool gen_meta_key(const GrResourceIOProcessor& proc, const GrShaderCaps& shaderCaps, uint32_t transformKey, GrProcessorKeyBuilder* b) { size_t processorKeySize = b->size(); uint32_t classID = proc.classID(); // Currently we allow 16 bits for the class id and the overall processor key size. static const uint32_t kMetaKeyInvalidMask = ~((uint32_t)UINT16_MAX); if ((processorKeySize | classID) & kMetaKeyInvalidMask) { return false; } add_sampler_and_image_keys(b, proc, shaderCaps); uint32_t* key = b->add32n(2); key[0] = (classID << 16) | SkToU32(processorKeySize); key[1] = transformKey; return true; } static bool gen_meta_key(const GrXferProcessor& xp, const GrShaderCaps& shaderCaps, GrProcessorKeyBuilder* b) { size_t processorKeySize = b->size(); uint32_t classID = xp.classID(); // Currently we allow 16 bits for the class id and the overall processor key size. static const uint32_t kMetaKeyInvalidMask = ~((uint32_t)UINT16_MAX); if ((processorKeySize | classID) & kMetaKeyInvalidMask) { return false; } b->add32((classID << 16) | SkToU32(processorKeySize)); return true; } static bool gen_frag_proc_and_meta_keys(const GrPrimitiveProcessor& primProc, const GrFragmentProcessor& fp, const GrShaderCaps& shaderCaps, GrProcessorKeyBuilder* b) { for (int i = 0; i < fp.numChildProcessors(); ++i) { if (!gen_frag_proc_and_meta_keys(primProc, fp.childProcessor(i), shaderCaps, b)) { return false; } } fp.getGLSLProcessorKey(shaderCaps, b); return gen_meta_key(fp, shaderCaps, primProc.getTransformKey(fp.coordTransforms(), fp.numCoordTransforms()), b); } bool GrProgramDesc::Build(GrProgramDesc* desc, const GrPrimitiveProcessor& primProc, bool hasPointSize, const GrPipeline& pipeline, const GrShaderCaps& shaderCaps) { // The descriptor is used as a cache key. Thus when a field of the // descriptor will not affect program generation (because of the attribute // bindings in use or other descriptor field settings) it should be set // to a canonical value to avoid duplicate programs with different keys. GR_STATIC_ASSERT(0 == kProcessorKeysOffset % sizeof(uint32_t)); // Make room for everything up to the effect keys. desc->key().reset(); desc->key().push_back_n(kProcessorKeysOffset); GrProcessorKeyBuilder b(&desc->key()); primProc.getGLSLProcessorKey(shaderCaps, &b); if (!gen_meta_key(primProc, shaderCaps, 0, &b)) { desc->key().reset(); return false; } for (int i = 0; i < pipeline.numFragmentProcessors(); ++i) { const GrFragmentProcessor& fp = pipeline.getFragmentProcessor(i); if (!gen_frag_proc_and_meta_keys(primProc, fp, shaderCaps, &b)) { desc->key().reset(); return false; } } const GrXferProcessor& xp = pipeline.getXferProcessor(); const GrSurfaceOrigin* originIfDstTexture = nullptr; GrSurfaceOrigin origin; if (pipeline.dstTextureProxy()) { origin = pipeline.dstTextureProxy()->origin(); originIfDstTexture = &origin; } xp.getGLSLProcessorKey(shaderCaps, &b, originIfDstTexture); if (!gen_meta_key(xp, shaderCaps, &b)) { desc->key().reset(); return false; } // --------DO NOT MOVE HEADER ABOVE THIS LINE-------------------------------------------------- // Because header is a pointer into the dynamic array, we can't push any new data into the key // below here. KeyHeader* header = desc->atOffset(); // make sure any padding in the header is zeroed. memset(header, 0, kHeaderSize); header->fOutputSwizzle = shaderCaps.configOutputSwizzle(pipeline.proxy()->config()).asKey(); header->fSnapVerticesToPixelCenters = pipeline.snapVerticesToPixelCenters(); header->fColorFragmentProcessorCnt = pipeline.numColorFragmentProcessors(); header->fCoverageFragmentProcessorCnt = pipeline.numCoverageFragmentProcessors(); // Fail if the client requested more processors than the key can fit. if (header->fColorFragmentProcessorCnt != pipeline.numColorFragmentProcessors() || header->fCoverageFragmentProcessorCnt != pipeline.numCoverageFragmentProcessors()) { return false; } header->fHasPointSize = hasPointSize ? 1 : 0; return true; }