/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrProgramDesc.h" #include "GrProcessor.h" #include "GrPipeline.h" #include "GrRenderTargetPriv.h" #include "SkChecksum.h" #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLCaps.h" static uint16_t sampler_key(GrSLType samplerType, GrPixelConfig config, GrShaderFlags visibility, const GrGLSLCaps& caps) { enum { kFirstSamplerType = kTexture2DSampler_GrSLType, kLastSamplerType = kTextureBufferSampler_GrSLType, kSamplerTypeKeyBits = 4 }; GR_STATIC_ASSERT(kLastSamplerType - kFirstSamplerType < (1 << kSamplerTypeKeyBits)); SkASSERT((int)samplerType >= kFirstSamplerType && (int)samplerType <= kLastSamplerType); int samplerTypeKey = samplerType - kFirstSamplerType; return SkToU16(caps.configTextureSwizzle(config).asKey() | (samplerTypeKey << 8) | (caps.samplerPrecision(config, visibility) << (8 + kSamplerTypeKeyBits))); } static void add_sampler_keys(GrProcessorKeyBuilder* b, const GrProcessor& proc, const GrGLSLCaps& caps) { int numTextures = proc.numTextures(); int numSamplers = numTextures + proc.numBuffers(); // Need two bytes per key (swizzle, sampler type, and precision). int word32Count = (numSamplers + 1) / 2; if (0 == word32Count) { return; } uint16_t* k16 = SkTCast(b->add32n(word32Count)); int i = 0; for (; i < numTextures; ++i) { const GrTextureAccess& access = proc.textureAccess(i); const GrTexture* tex = access.getTexture(); k16[i] = sampler_key(tex->samplerType(), tex->config(), access.getVisibility(), caps); } for (; i < numSamplers; ++i) { const GrBufferAccess& access = proc.bufferAccess(i - numTextures); k16[i] = sampler_key(kTextureBufferSampler_GrSLType, access.texelConfig(), access.visibility(), caps); } // zero the last 16 bits if the number of samplers is odd. if (numSamplers & 0x1) { k16[numSamplers] = 0; } } /** * A function which emits a meta key into the key builder. This is required because shader code may * be dependent on properties of the effect that the effect itself doesn't use * in its key (e.g. the pixel format of textures used). So we create a meta-key for * every effect using this function. It is also responsible for inserting the effect's class ID * which must be different for every GrProcessor subclass. It can fail if an effect uses too many * transforms, etc, for the space allotted in the meta-key. NOTE, both FPs and GPs share this * function because it is hairy, though FPs do not have attribs, and GPs do not have transforms */ static bool gen_meta_key(const GrProcessor& proc, const GrGLSLCaps& glslCaps, uint32_t transformKey, GrProcessorKeyBuilder* b) { size_t processorKeySize = b->size(); uint32_t classID = proc.classID(); // Currently we allow 16 bits for the class id and the overall processor key size. static const uint32_t kMetaKeyInvalidMask = ~((uint32_t)SK_MaxU16); if ((processorKeySize | classID) & kMetaKeyInvalidMask) { return false; } add_sampler_keys(b, proc, glslCaps); uint32_t* key = b->add32n(2); key[0] = (classID << 16) | SkToU32(processorKeySize); key[1] = transformKey; return true; } static bool gen_frag_proc_and_meta_keys(const GrPrimitiveProcessor& primProc, const GrFragmentProcessor& fp, const GrGLSLCaps& glslCaps, GrProcessorKeyBuilder* b) { for (int i = 0; i < fp.numChildProcessors(); ++i) { if (!gen_frag_proc_and_meta_keys(primProc, fp.childProcessor(i), glslCaps, b)) { return false; } } fp.getGLSLProcessorKey(glslCaps, b); return gen_meta_key(fp, glslCaps, primProc.getTransformKey(fp.coordTransforms(), fp.numCoordTransforms()), b); } bool GrProgramDesc::Build(GrProgramDesc* desc, const GrPrimitiveProcessor& primProc, bool hasPointSize, const GrPipeline& pipeline, const GrGLSLCaps& glslCaps) { // The descriptor is used as a cache key. Thus when a field of the // descriptor will not affect program generation (because of the attribute // bindings in use or other descriptor field settings) it should be set // to a canonical value to avoid duplicate programs with different keys. GR_STATIC_ASSERT(0 == kProcessorKeysOffset % sizeof(uint32_t)); // Make room for everything up to the effect keys. desc->key().reset(); desc->key().push_back_n(kProcessorKeysOffset); GrProcessorKeyBuilder b(&desc->key()); primProc.getGLSLProcessorKey(glslCaps, &b); if (!gen_meta_key(primProc, glslCaps, 0, &b)) { desc->key().reset(); return false; } GrProcessor::RequiredFeatures requiredFeatures = primProc.requiredFeatures(); for (int i = 0; i < pipeline.numFragmentProcessors(); ++i) { const GrFragmentProcessor& fp = pipeline.getFragmentProcessor(i); if (!gen_frag_proc_and_meta_keys(primProc, fp, glslCaps, &b)) { desc->key().reset(); return false; } requiredFeatures |= fp.requiredFeatures(); } const GrXferProcessor& xp = pipeline.getXferProcessor(); xp.getGLSLProcessorKey(glslCaps, &b); if (!gen_meta_key(xp, glslCaps, 0, &b)) { desc->key().reset(); return false; } requiredFeatures |= xp.requiredFeatures(); // --------DO NOT MOVE HEADER ABOVE THIS LINE-------------------------------------------------- // Because header is a pointer into the dynamic array, we can't push any new data into the key // below here. KeyHeader* header = desc->atOffset(); // make sure any padding in the header is zeroed. memset(header, 0, kHeaderSize); GrRenderTarget* rt = pipeline.getRenderTarget(); if (requiredFeatures & (GrProcessor::kFragmentPosition_RequiredFeature | GrProcessor::kSampleLocations_RequiredFeature)) { header->fSurfaceOriginKey = GrGLSLFragmentShaderBuilder::KeyForSurfaceOrigin(rt->origin()); } else { header->fSurfaceOriginKey = 0; } if (requiredFeatures & GrProcessor::kSampleLocations_RequiredFeature) { SkASSERT(pipeline.isHWAntialiasState()); header->fSamplePatternKey = rt->renderTargetPriv().getMultisampleSpecs(pipeline).fUniqueID; } else { header->fSamplePatternKey = 0; } header->fOutputSwizzle = glslCaps.configOutputSwizzle(rt->config()).asKey(); header->fIgnoresCoverage = pipeline.ignoresCoverage() ? 1 : 0; header->fSnapVerticesToPixelCenters = pipeline.snapVerticesToPixelCenters(); header->fColorFragmentProcessorCnt = pipeline.numColorFragmentProcessors(); header->fCoverageFragmentProcessorCnt = pipeline.numCoverageFragmentProcessors(); // Fail if the client requested more processors than the key can fit. if (header->fColorFragmentProcessorCnt != pipeline.numColorFragmentProcessors() || header->fCoverageFragmentProcessorCnt != pipeline.numCoverageFragmentProcessors()) { return false; } header->fHasPointSize = hasPointSize ? 1 : 0; return true; }