/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrProcessorSet.h" #include "GrAppliedClip.h" #include "GrCaps.h" #include "GrXferProcessor.h" #include "effects/GrPorterDuffXferProcessor.h" const GrProcessorSet& GrProcessorSet::EmptySet() { static const GrProcessorSet gEmpty(GrProcessorSet::Empty::kEmpty); return gEmpty; } GrProcessorSet::GrProcessorSet(GrPaint&& paint) : fXP(paint.getXPFactory()) { fFlags = 0; if (paint.numColorFragmentProcessors() <= kMaxColorProcessors) { fColorFragmentProcessorCnt = paint.numColorFragmentProcessors(); fFragmentProcessors.reset(paint.numTotalFragmentProcessors()); int i = 0; for (auto& fp : paint.fColorFragmentProcessors) { SkASSERT(fp.get()); fFragmentProcessors[i++] = fp.release(); } for (auto& fp : paint.fCoverageFragmentProcessors) { SkASSERT(fp.get()); fFragmentProcessors[i++] = fp.release(); } } else { SkDebugf("Insane number of color fragment processors in paint. Dropping all processors."); fColorFragmentProcessorCnt = 0; } } GrProcessorSet::~GrProcessorSet() { for (int i = fFragmentProcessorOffset; i < fFragmentProcessors.count(); ++i) { if (this->isFinalized()) { fFragmentProcessors[i]->completedExecution(); } else { fFragmentProcessors[i]->unref(); } } if (this->isFinalized() && this->xferProcessor()) { this->xferProcessor()->unref(); } } SkString dump_fragment_processor_tree(const GrFragmentProcessor* fp, int indentCnt) { SkString result; SkString indentString; for (int i = 0; i < indentCnt; ++i) { indentString.append(" "); } result.appendf("%s%s %s \n", indentString.c_str(), fp->name(), fp->dumpInfo().c_str()); if (fp->numChildProcessors()) { for (int i = 0; i < fp->numChildProcessors(); ++i) { result += dump_fragment_processor_tree(&fp->childProcessor(i), indentCnt + 1); } } return result; } SkString GrProcessorSet::dumpProcessors() const { SkString result; if (this->numFragmentProcessors()) { if (this->numColorFragmentProcessors()) { result.append("Color Fragment Processors:\n"); for (int i = 0; i < this->numColorFragmentProcessors(); ++i) { result += dump_fragment_processor_tree(this->colorFragmentProcessor(i), 1); } } else { result.append("No color fragment processors.\n"); } if (this->numCoverageFragmentProcessors()) { result.append("Coverage Fragment Processors:\n"); for (int i = 0; i < this->numColorFragmentProcessors(); ++i) { result += dump_fragment_processor_tree(this->coverageFragmentProcessor(i), 1); } } else { result.append("No coverage fragment processors.\n"); } } else { result.append("No color or coverage fragment processors.\n"); } if (this->isFinalized()) { result.append("Xfer Processor: "); if (this->xferProcessor()) { result.appendf("%s\n", this->xferProcessor()->name()); } else { result.append("SrcOver\n"); } } else { result.append("XP Factory dumping not implemented.\n"); } return result; } bool GrProcessorSet::operator==(const GrProcessorSet& that) const { SkASSERT(this->isFinalized()); SkASSERT(that.isFinalized()); int fpCount = this->numFragmentProcessors(); if (((fFlags ^ that.fFlags) & ~kFinalized_Flag) || fpCount != that.numFragmentProcessors() || fColorFragmentProcessorCnt != that.fColorFragmentProcessorCnt) { return false; } for (int i = 0; i < fpCount; ++i) { int a = i + fFragmentProcessorOffset; int b = i + that.fFragmentProcessorOffset; if (!fFragmentProcessors[a]->isEqual(*that.fFragmentProcessors[b])) { return false; } } // Most of the time both of these are null if (!this->xferProcessor() && !that.xferProcessor()) { return true; } const GrXferProcessor& thisXP = this->xferProcessor() ? *this->xferProcessor() : GrPorterDuffXPFactory::SimpleSrcOverXP(); const GrXferProcessor& thatXP = that.xferProcessor() ? *that.xferProcessor() : GrPorterDuffXPFactory::SimpleSrcOverXP(); return thisXP.isEqual(thatXP); } GrProcessorSet::Analysis GrProcessorSet::finalize(const GrProcessorAnalysisColor& colorInput, const GrProcessorAnalysisCoverage coverageInput, const GrAppliedClip* clip, bool isMixedSamples, const GrCaps& caps, GrColor* overrideInputColor) { SkASSERT(!this->isFinalized()); SkASSERT(!fFragmentProcessorOffset); GrProcessorSet::Analysis analysis; const GrFragmentProcessor* clipFP = clip ? clip->clipCoverageFragmentProcessor() : nullptr; GrColorFragmentProcessorAnalysis colorAnalysis(colorInput); analysis.fCompatibleWithCoverageAsAlpha = GrProcessorAnalysisCoverage::kLCD != coverageInput; const GrFragmentProcessor* const* fps = fFragmentProcessors.get() + fFragmentProcessorOffset; colorAnalysis.analyzeProcessors(fps, fColorFragmentProcessorCnt); analysis.fCompatibleWithCoverageAsAlpha &= colorAnalysis.allProcessorsCompatibleWithCoverageAsAlpha(); fps += fColorFragmentProcessorCnt; int n = this->numCoverageFragmentProcessors(); bool hasCoverageFP = n > 0; bool coverageUsesLocalCoords = false; for (int i = 0; i < n; ++i) { if (!fps[i]->compatibleWithCoverageAsAlpha()) { analysis.fCompatibleWithCoverageAsAlpha = false; // Other than tests that exercise atypical behavior we expect all coverage FPs to be // compatible with the coverage-as-alpha optimization. GrCapsDebugf(&caps, "Coverage FP is not compatible with coverage as alpha.\n"); } coverageUsesLocalCoords |= fps[i]->usesLocalCoords(); } if (clipFP) { analysis.fCompatibleWithCoverageAsAlpha &= clipFP->compatibleWithCoverageAsAlpha(); coverageUsesLocalCoords |= clipFP->usesLocalCoords(); hasCoverageFP = true; } int colorFPsToEliminate = colorAnalysis.initialProcessorsToEliminate(overrideInputColor); analysis.fInputColorType = static_cast( colorFPsToEliminate ? Analysis::kOverridden_InputColorType : Analysis::kOriginal_InputColorType); GrProcessorAnalysisCoverage outputCoverage; if (GrProcessorAnalysisCoverage::kLCD == coverageInput) { outputCoverage = GrProcessorAnalysisCoverage::kLCD; } else if (hasCoverageFP || GrProcessorAnalysisCoverage::kSingleChannel == coverageInput) { outputCoverage = GrProcessorAnalysisCoverage::kSingleChannel; } else { outputCoverage = GrProcessorAnalysisCoverage::kNone; } GrXPFactory::AnalysisProperties props = GrXPFactory::GetAnalysisProperties( this->xpFactory(), colorAnalysis.outputColor(), outputCoverage, caps); if (!this->numCoverageFragmentProcessors() && GrProcessorAnalysisCoverage::kNone == coverageInput) { analysis.fCanCombineOverlappedStencilAndCover = SkToBool( props & GrXPFactory::AnalysisProperties::kCanCombineOverlappedStencilAndCover); } else { // If we have non-clipping coverage processors we don't try to merge stencil steps as its // unclear whether it will be correct. We don't expect this to happen in practice. analysis.fCanCombineOverlappedStencilAndCover = false; } analysis.fRequiresDstTexture = SkToBool(props & GrXPFactory::AnalysisProperties::kRequiresDstTexture); analysis.fCompatibleWithCoverageAsAlpha &= SkToBool(props & GrXPFactory::AnalysisProperties::kCompatibleWithAlphaAsCoverage); analysis.fRequiresBarrierBetweenOverlappingDraws = SkToBool( props & GrXPFactory::AnalysisProperties::kRequiresBarrierBetweenOverlappingDraws); if (props & GrXPFactory::AnalysisProperties::kIgnoresInputColor) { colorFPsToEliminate = this->numColorFragmentProcessors(); analysis.fInputColorType = static_cast(Analysis::kIgnored_InputColorType); analysis.fUsesLocalCoords = coverageUsesLocalCoords; } else { analysis.fUsesLocalCoords = coverageUsesLocalCoords | colorAnalysis.usesLocalCoords(); } for (int i = 0; i < colorFPsToEliminate; ++i) { fFragmentProcessors[i]->unref(); fFragmentProcessors[i] = nullptr; } for (int i = colorFPsToEliminate; i < fFragmentProcessors.count(); ++i) { fFragmentProcessors[i]->addPendingExecution(); fFragmentProcessors[i]->unref(); } fFragmentProcessorOffset = colorFPsToEliminate; fColorFragmentProcessorCnt -= colorFPsToEliminate; auto xp = GrXPFactory::MakeXferProcessor(this->xpFactory(), colorAnalysis.outputColor(), outputCoverage, isMixedSamples, caps); fXP.fProcessor = xp.release(); fFlags |= kFinalized_Flag; analysis.fIsInitialized = true; return analysis; }