/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrProcessorAnalysis_DEFINED #define GrProcessorAnalysis_DEFINED #include "GrColor.h" class GrDrawOp; class GrFragmentProcessor; class GrPrimitiveProcessor; class GrProcessorAnalysisColor { public: enum class Opaque { kNo, kYes, }; constexpr GrProcessorAnalysisColor(Opaque opaque = Opaque::kNo) : fFlags(opaque == Opaque::kYes ? kIsOpaque_Flag : 0), fColor(0) {} GrProcessorAnalysisColor(GrColor color) { this->setToConstant(color); } void setToConstant(GrColor color) { fColor = color; if (GrColorIsOpaque(color)) { fFlags = kColorIsKnown_Flag | kIsOpaque_Flag; } else { fFlags = kColorIsKnown_Flag; } } void setToUnknown() { fFlags = 0; } void setToUnknownOpaque() { fFlags = kIsOpaque_Flag; } bool isOpaque() const { return SkToBool(kIsOpaque_Flag & fFlags); } bool isConstant(GrColor* color = nullptr) const { if (kColorIsKnown_Flag & fFlags) { if (color) { *color = fColor; } return true; } return false; } bool operator==(const GrProcessorAnalysisColor& that) const { if (fFlags != that.fFlags) { return false; } return (kColorIsKnown_Flag & fFlags) ? fColor == that.fColor : true; } /** The returned value reflects the common properties of the two inputs. */ static GrProcessorAnalysisColor Combine(const GrProcessorAnalysisColor& a, const GrProcessorAnalysisColor& b) { GrProcessorAnalysisColor result; uint32_t commonFlags = a.fFlags & b.fFlags; if ((kColorIsKnown_Flag & commonFlags) && a.fColor == b.fColor) { result.fColor = a.fColor; result.fFlags = a.fFlags; } else if (kIsOpaque_Flag & commonFlags) { result.fFlags = kIsOpaque_Flag; } return result; } private: enum Flags { kColorIsKnown_Flag = 0x1, kIsOpaque_Flag = 0x2, }; uint32_t fFlags; GrColor fColor; }; enum class GrProcessorAnalysisCoverage { kNone, kSingleChannel, kLCD }; /** * GrColorFragmentProcessorAnalysis gathers invariant data from a set of color fragment processor. * It is used to recognize optimizations that can simplify the generated shader or make blending * more effecient. */ class GrColorFragmentProcessorAnalysis { public: GrColorFragmentProcessorAnalysis() = default; GrColorFragmentProcessorAnalysis(const GrProcessorAnalysisColor& input) : GrColorFragmentProcessorAnalysis() { fAllProcessorsCompatibleWithCoverageAsAlpha = true; fIsOpaque = input.isOpaque(); GrColor color; if (input.isConstant(&color)) { fLastKnownOutputColor = GrColor4f::FromGrColor(color); fProcessorsVisitedWithKnownOutput = 0; } } void reset(const GrProcessorAnalysisColor& input) { *this = GrColorFragmentProcessorAnalysis(input); } /** * Runs through a series of processors and updates calculated values. This can be called * repeatedly for cases when the sequence of processors is not in a contiguous array. */ void analyzeProcessors(const GrFragmentProcessor* const* processors, int cnt); bool isOpaque() const { return fIsOpaque; } /** * Are all the fragment processors compatible with conflating coverage with color prior to the * the first fragment processor. This result assumes that processors that should be eliminated * as indicated by initialProcessorsToEliminate() are in fact eliminated. */ bool allProcessorsCompatibleWithCoverageAsAlpha() const { return fAllProcessorsCompatibleWithCoverageAsAlpha; } /** * Do any of the fragment processors require local coords. This result assumes that * processors that should be eliminated as indicated by initialProcessorsToEliminate() are in * fact eliminated. */ bool usesLocalCoords() const { return fUsesLocalCoords; } /** * If we detected that the result after the first N processors is a known color then we * eliminate those N processors and replace the GrDrawOp's color input to the GrPipeline with * the known output of the Nth processor, so that the Nth+1 fragment processor (or the XP if * there are only N processors) sees its expected input. If this returns 0 then there are no * processors to eliminate. */ int initialProcessorsToEliminate(GrColor* newPipelineInputColor) const { if (fProcessorsVisitedWithKnownOutput > 0) { *newPipelineInputColor = fLastKnownOutputColor.toGrColor(); } return SkTMax(0, fProcessorsVisitedWithKnownOutput); } int initialProcessorsToEliminate(GrColor4f* newPipelineInputColor) const { if (fProcessorsVisitedWithKnownOutput > 0) { *newPipelineInputColor = fLastKnownOutputColor; } return SkTMax(0, fProcessorsVisitedWithKnownOutput); } GrProcessorAnalysisColor outputColor() const { if (fProcessorsVisitedWithKnownOutput != fTotalProcessorsVisited) { return GrProcessorAnalysisColor(fIsOpaque ? GrProcessorAnalysisColor::Opaque::kYes : GrProcessorAnalysisColor::Opaque::kNo); } return GrProcessorAnalysisColor(fLastKnownOutputColor.toGrColor()); } private: int fTotalProcessorsVisited = 0; // negative one means even the color is unknown before adding the first processor. int fProcessorsVisitedWithKnownOutput = -1; bool fIsOpaque = false; bool fAllProcessorsCompatibleWithCoverageAsAlpha = true; bool fUsesLocalCoords = false; GrColor4f fLastKnownOutputColor; }; #endif