/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrProcOptInfo_DEFINED #define GrProcOptInfo_DEFINED #include "GrColor.h" #include "GrPipelineInput.h" class GrDrawOp; class GrFragmentProcessor; class GrPrimitiveProcessor; /** * GrProcOptInfo gathers invariant data from a set of processor stages.It is used to recognize * optimizations related to eliminating stages and vertex attributes that aren't necessary for a * draw. */ class GrProcOptInfo { public: GrProcOptInfo() = default; GrProcOptInfo(const GrPipelineInput& input) : GrProcOptInfo() { fAllProcessorsCompatibleWithCoverageAsAlpha = !input.isLCDCoverage(); fIsOpaque = input.isOpaque(); GrColor color; if (input.isConstant(&color)) { fLastKnownOutputColor = GrColor4f::FromGrColor(color); fProcessorsVisitedWithKnownOutput = 0; } } void reset(const GrPipelineInput& input) { *this = GrProcOptInfo(input); } /** * Runs through a series of processors and updates calculated values. This can be called * repeatedly for cases when the sequence of processors is not in a contiguous array. */ void analyzeProcessors(const GrFragmentProcessor* const* processors, int cnt); bool isOpaque() const { return fIsOpaque; } /** * Are all the fragment processors compatible with conflating coverage with color prior to the * the first fragment processor. This result does not consider processors that should be * eliminated as indicated by initialProcessorsToEliminate(). */ bool allProcessorsCompatibleWithCoverageAsAlpha() const { return fAllProcessorsCompatibleWithCoverageAsAlpha; } /** * Do any of the fragment processors require local coords. This result does not consider * processors that should be eliminated as indicated by initialProcessorsToEliminate(). */ bool usesLocalCoords() const { return fUsesLocalCoords; } /** * If we detected that the result after the first N processors is a known color then we * eliminate those N processors and replace the GrDrawOp's color input to the GrPipeline with * the known output of the Nth processor, so that the Nth+1 fragment processor (or the XP if * there are only N processors) sees its expected input. If this returns 0 then there are no * processors to eliminate. */ int initialProcessorsToEliminate(GrColor* newPipelineInputColor) const { if (fProcessorsVisitedWithKnownOutput > 0) { *newPipelineInputColor = fLastKnownOutputColor.toGrColor(); } return SkTMax(0, fProcessorsVisitedWithKnownOutput); } int initialProcessorsToEliminate(GrColor4f* newPipelineInputColor) const { if (fProcessorsVisitedWithKnownOutput > 0) { *newPipelineInputColor = fLastKnownOutputColor; } return SkTMax(0, fProcessorsVisitedWithKnownOutput); } bool hasKnownOutputColor(GrColor* knownOutputColor = nullptr) const { if (fProcessorsVisitedWithKnownOutput != fTotalProcessorsVisited) { return false; } if (knownOutputColor) { *knownOutputColor = fLastKnownOutputColor.toGrColor(); } return true; } private: int fTotalProcessorsVisited = 0; // negative one means even the color is unknown before adding the first processor. int fProcessorsVisitedWithKnownOutput = -1; bool fIsOpaque = false; bool fAllProcessorsCompatibleWithCoverageAsAlpha = true; bool fUsesLocalCoords = false; GrColor4f fLastKnownOutputColor; }; #endif