/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrProcOptInfo_DEFINED #define GrProcOptInfo_DEFINED #include "GrColor.h" #include "GrInvariantOutput.h" #include "GrStagedProcessor.h" class GrBatch; class GrFragmentProcessor; class GrPrimitiveProcessor; class GrProcessor; /** * GrProcOptInfo gathers invariant data from a set of processor stages.It is used to recognize * optimizations related to eliminating stages and vertex attributes that aren't necessary for a * draw. */ class GrProcOptInfo { public: GrProcOptInfo() : fInOut(0, static_cast(0), false) , fFirstEffectStageIndex(0) , fInputColorIsUsed(true) , fInputColor(0) , fReadsFragPosition(false) {} void calcWithInitialValues(const GrFragmentStage*, int stageCount, GrColor startColor, GrColorComponentFlags flags, bool areCoverageStages); void calcColorWithBatch(const GrBatch*, const GrFragmentStage*, int stagecount); void calcCoverageWithBatch(const GrBatch*, const GrFragmentStage*, int stagecount); // TODO delete these when batch is everywhere void calcColorWithPrimProc(const GrPrimitiveProcessor*, const GrFragmentStage*, int stagecount); void calcCoverageWithPrimProc(const GrPrimitiveProcessor*, const GrFragmentStage*, int stagecount); bool isSolidWhite() const { return fInOut.isSolidWhite(); } bool isOpaque() const { return fInOut.isOpaque(); } bool isSingleComponent() const { return fInOut.isSingleComponent(); } bool allStagesMultiplyInput() const { return fInOut.allStagesMulInput(); } // TODO: Once texture pixel configs quaries are updated, we no longer need this function. // For now this function will correctly tell us if we are using LCD text or not and should only // be called when looking at the coverage output. bool isFourChannelOutput() const { return !fInOut.isSingleComponent() && fInOut.isLCDCoverage(); } GrColor color() const { return fInOut.color(); } GrColorComponentFlags validFlags() const { return static_cast(fInOut.validFlags()); } /** * Returns the index of the first effective color stage. If an intermediate stage doesn't read * its input or has a known output, then we can ignore all earlier stages since they will not * affect the final output. Thus the first effective stage index is the index to the first stage * that will have an effect on the final output. * * If stages before the firstEffectiveStageIndex are removed, corresponding values from * inputColorIsUsed(), inputColorToEffectiveStage(), removeVertexAttribs(), and readsDst() must * be used when setting up the draw to ensure correct drawing. */ int firstEffectiveStageIndex() const { return fFirstEffectStageIndex; } /** * True if the first effective stage reads its input, false otherwise. */ bool inputColorIsUsed() const { return fInputColorIsUsed; } /** * If input color is used and per-vertex colors are not used, this is the input color to the * first effective stage. */ GrColor inputColorToEffectiveStage() const { return fInputColor; } /** * Returns true if any of the stages preserved by GrProcOptInfo read the frag position. */ bool readsFragPosition() const { return fReadsFragPosition; } private: void internalCalc(const GrFragmentStage*, int stagecount, bool initWillReadFragPosition); GrInvariantOutput fInOut; int fFirstEffectStageIndex; bool fInputColorIsUsed; GrColor fInputColor; bool fReadsFragPosition; }; #endif