/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrPathUtils_DEFINED #define GrPathUtils_DEFINED #include "SkGeometry.h" #include "SkRect.h" #include "SkPathPriv.h" #include "SkTArray.h" class SkMatrix; /** * Utilities for evaluating paths. */ namespace GrPathUtils { // Very small tolerances will be increased to a minimum threshold value, to avoid division // problems in subsequent math. SkScalar scaleToleranceToSrc(SkScalar devTol, const SkMatrix& viewM, const SkRect& pathBounds); int worstCasePointCount(const SkPath&, int* subpaths, SkScalar tol); uint32_t quadraticPointCount(const SkPoint points[], SkScalar tol); uint32_t generateQuadraticPoints(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar tolSqd, SkPoint** points, uint32_t pointsLeft); uint32_t cubicPointCount(const SkPoint points[], SkScalar tol); uint32_t generateCubicPoints(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, const SkPoint& p3, SkScalar tolSqd, SkPoint** points, uint32_t pointsLeft); // A 2x3 matrix that goes from the 2d space coordinates to UV space where // u^2-v = 0 specifies the quad. The matrix is determined by the control // points of the quadratic. class QuadUVMatrix { public: QuadUVMatrix() {} // Initialize the matrix from the control pts QuadUVMatrix(const SkPoint controlPts[3]) { this->set(controlPts); } void set(const SkPoint controlPts[3]); /** * Applies the matrix to vertex positions to compute UV coords. This * has been templated so that the compiler can easliy unroll the loop * and reorder to avoid stalling for loads. The assumption is that a * path renderer will have a small fixed number of vertices that it * uploads for each quad. * * N is the number of vertices. * STRIDE is the size of each vertex. * UV_OFFSET is the offset of the UV values within each vertex. * vertices is a pointer to the first vertex. */ template void apply(const void* vertices) const { intptr_t xyPtr = reinterpret_cast(vertices); intptr_t uvPtr = reinterpret_cast(vertices) + UV_OFFSET; float sx = fM[0]; float kx = fM[1]; float tx = fM[2]; float ky = fM[3]; float sy = fM[4]; float ty = fM[5]; for (int i = 0; i < N; ++i) { const SkPoint* xy = reinterpret_cast(xyPtr); SkPoint* uv = reinterpret_cast(uvPtr); uv->fX = sx * xy->fX + kx * xy->fY + tx; uv->fY = ky * xy->fX + sy * xy->fY + ty; xyPtr += STRIDE; uvPtr += STRIDE; } } private: float fM[6]; }; // Input is 3 control points and a weight for a bezier conic. Calculates the // three linear functionals (K,L,M) that represent the implicit equation of the // conic, k^2 - lm. // // Output: klm holds the linear functionals K,L,M as row vectors: // // | ..K.. | | x | | k | // | ..L.. | * | y | == | l | // | ..M.. | | 1 | | m | // void getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* klm); // Converts a cubic into a sequence of quads. If working in device space // use tolScale = 1, otherwise set based on stretchiness of the matrix. The // result is sets of 3 points in quads. void convertCubicToQuads(const SkPoint p[4], SkScalar tolScale, SkTArray* quads); // When we approximate a cubic {a,b,c,d} with a quadratic we may have to // ensure that the new control point lies between the lines ab and cd. The // convex path renderer requires this. It starts with a path where all the // control points taken together form a convex polygon. It relies on this // property and the quadratic approximation of cubics step cannot alter it. // This variation enforces this constraint. The cubic must be simple and dir // must specify the orientation of the contour containing the cubic. void convertCubicToQuadsConstrainToTangents(const SkPoint p[4], SkScalar tolScale, SkPathPriv::FirstDirection dir, SkTArray* quads); enum class ExcludedTerm { kNonInvertible, kQuadraticTerm, kLinearTerm }; // Computes the inverse-transpose of the cubic's power basis matrix, after removing a specific // row of coefficients. // // E.g. if the cubic is defined in power basis form as follows: // // | x3 y3 0 | // C(t,s) = [t^3 t^2*s t*s^2 s^3] * | x2 y2 0 | // | x1 y1 0 | // | x0 y0 1 | // // And the excluded term is "kQuadraticTerm", then the resulting inverse-transpose will be: // // | x3 y3 0 | -1 T // | x1 y1 0 | // | x0 y0 1 | // // (The term to exclude is chosen based on maximizing the resulting matrix determinant.) // // This can be used to find the KLM linear functionals: // // | ..K.. | | ..kcoeffs.. | // | ..L.. | = | ..lcoeffs.. | * inverse_transpose_power_basis_matrix // | ..M.. | | ..mcoeffs.. | // // NOTE: the same term that was excluded here must also be removed from the corresponding column // of the klmcoeffs matrix. // // Returns which row of coefficients was removed, or kNonInvertible if the cubic was degenerate. ExcludedTerm calcCubicInverseTransposePowerBasisMatrix(const SkPoint p[4], SkMatrix* out); // Computes the KLM linear functionals for the cubic implicit form. The "right" side of the // curve (when facing in the direction of increasing parameter values) will be the area that // satisfies: // // k^3 < l*m // // Output: // // klm: Holds the linear functionals K,L,M as row vectors: // // | ..K.. | | x | | k | // | ..L.. | * | y | == | l | // | ..M.. | | 1 | | m | // // NOTE: the KLM lines are calculated in the same space as the input control points. If you // transform the points the lines will also need to be transformed. This can be done by mapping // the lines with the inverse-transpose of the matrix used to map the points. // // t[],s[]: These are set to the two homogeneous parameter values at which points the lines L&M // intersect with K (See SkClassifyCubic). // // Returns the cubic's classification. SkCubicType getCubicKLM(const SkPoint src[4], SkMatrix* klm, double t[2], double s[2]); // Chops the cubic bezier passed in by src, at the double point (intersection point) // if the curve is a cubic loop. If it is a loop, there will be two parametric values for // the double point: t1 and t2. We chop the cubic at these values if they are between 0 and 1. // Return value: // Value of 3: t1 and t2 are both between (0,1), and dst will contain the three cubics, // dst[0..3], dst[3..6], and dst[6..9] if dst is not nullptr // Value of 2: Only one of t1 and t2 are between (0,1), and dst will contain the two cubics, // dst[0..3] and dst[3..6] if dst is not nullptr // Value of 1: Neither t1 nor t2 are between (0,1), and dst will contain the one original cubic, // src[0..3] // // Output: // // klm: Holds the linear functionals K,L,M as row vectors. (See getCubicKLM().) // // loopIndex: This value will tell the caller which of the chopped sections (if any) are the // actual loop. A value of -1 means there is no loop section. The caller can then use // this value to decide how/if they want to flip the orientation of this section. // The flip should be done by negating the k and l values as follows: // // KLM.postScale(-1, -1) int chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkMatrix* klm, int* loopIndex); // When tessellating curved paths into linear segments, this defines the maximum distance // in screen space which a segment may deviate from the mathmatically correct value. // Above this value, the segment will be subdivided. // This value was chosen to approximate the supersampling accuracy of the raster path (16 // samples, or one quarter pixel). static const SkScalar kDefaultTolerance = SkDoubleToScalar(0.25); // We guarantee that no quad or cubic will ever produce more than this many points static const int kMaxPointsPerCurve = 1 << 10; }; #endif