/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrPathUtils.h" #include "GrPoint.h" #include "SkGeometry.h" GrScalar GrPathUtils::scaleToleranceToSrc(GrScalar devTol, const GrMatrix& viewM, const GrRect& pathBounds) { // In order to tesselate the path we get a bound on how much the matrix can // stretch when mapping to screen coordinates. GrScalar stretch = viewM.getMaxStretch(); GrScalar srcTol = devTol; if (stretch < 0) { // take worst case mapRadius amoung four corners. // (less than perfect) for (int i = 0; i < 4; ++i) { GrMatrix mat; mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight, (i < 2) ? pathBounds.fTop : pathBounds.fBottom); mat.postConcat(viewM); stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1)); } } srcTol = GrScalarDiv(srcTol, stretch); return srcTol; } static const int MAX_POINTS_PER_CURVE = 1 << 10; static const GrScalar gMinCurveTol = GrFloatToScalar(0.0001f); uint32_t GrPathUtils::quadraticPointCount(const GrPoint points[], GrScalar tol) { if (tol < gMinCurveTol) { tol = gMinCurveTol; } GrAssert(tol > 0); GrScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]); if (d <= tol) { return 1; } else { // Each time we subdivide, d should be cut in 4. So we need to // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x) // points. // 2^(log4(x)) = sqrt(x); int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol))); int pow2 = GrNextPow2(temp); // Because of NaNs & INFs we can wind up with a degenerate temp // such that pow2 comes out negative. Also, our point generator // will always output at least one pt. if (pow2 < 1) { pow2 = 1; } return GrMin(pow2, MAX_POINTS_PER_CURVE); } } uint32_t GrPathUtils::generateQuadraticPoints(const GrPoint& p0, const GrPoint& p1, const GrPoint& p2, GrScalar tolSqd, GrPoint** points, uint32_t pointsLeft) { if (pointsLeft < 2 || (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) { (*points)[0] = p2; *points += 1; return 1; } GrPoint q[] = { { GrScalarAve(p0.fX, p1.fX), GrScalarAve(p0.fY, p1.fY) }, { GrScalarAve(p1.fX, p2.fX), GrScalarAve(p1.fY, p2.fY) }, }; GrPoint r = { GrScalarAve(q[0].fX, q[1].fX), GrScalarAve(q[0].fY, q[1].fY) }; pointsLeft >>= 1; uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft); uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft); return a + b; } uint32_t GrPathUtils::cubicPointCount(const GrPoint points[], GrScalar tol) { if (tol < gMinCurveTol) { tol = gMinCurveTol; } GrAssert(tol > 0); GrScalar d = GrMax( points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]), points[2].distanceToLineSegmentBetweenSqd(points[0], points[3])); d = SkScalarSqrt(d); if (d <= tol) { return 1; } else { int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol))); int pow2 = GrNextPow2(temp); // Because of NaNs & INFs we can wind up with a degenerate temp // such that pow2 comes out negative. Also, our point generator // will always output at least one pt. if (pow2 < 1) { pow2 = 1; } return GrMin(pow2, MAX_POINTS_PER_CURVE); } } uint32_t GrPathUtils::generateCubicPoints(const GrPoint& p0, const GrPoint& p1, const GrPoint& p2, const GrPoint& p3, GrScalar tolSqd, GrPoint** points, uint32_t pointsLeft) { if (pointsLeft < 2 || (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd && p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) { (*points)[0] = p3; *points += 1; return 1; } GrPoint q[] = { { GrScalarAve(p0.fX, p1.fX), GrScalarAve(p0.fY, p1.fY) }, { GrScalarAve(p1.fX, p2.fX), GrScalarAve(p1.fY, p2.fY) }, { GrScalarAve(p2.fX, p3.fX), GrScalarAve(p2.fY, p3.fY) } }; GrPoint r[] = { { GrScalarAve(q[0].fX, q[1].fX), GrScalarAve(q[0].fY, q[1].fY) }, { GrScalarAve(q[1].fX, q[2].fX), GrScalarAve(q[1].fY, q[2].fY) } }; GrPoint s = { GrScalarAve(r[0].fX, r[1].fX), GrScalarAve(r[0].fY, r[1].fY) }; pointsLeft >>= 1; uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft); uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft); return a + b; } int GrPathUtils::worstCasePointCount(const GrPath& path, int* subpaths, GrScalar tol) { if (tol < gMinCurveTol) { tol = gMinCurveTol; } GrAssert(tol > 0); int pointCount = 0; *subpaths = 1; bool first = true; SkPath::Iter iter(path, false); GrPathCmd cmd; GrPoint pts[4]; while ((cmd = (GrPathCmd)iter.next(pts)) != kEnd_PathCmd) { switch (cmd) { case kLine_PathCmd: pointCount += 1; break; case kQuadratic_PathCmd: pointCount += quadraticPointCount(pts, tol); break; case kCubic_PathCmd: pointCount += cubicPointCount(pts, tol); break; case kMove_PathCmd: pointCount += 1; if (!first) { ++(*subpaths); } break; default: break; } first = false; } return pointCount; } namespace { // The matrix computed for quadDesignSpaceToUVCoordsMatrix should never really // have perspective and we really want to avoid perspective matrix muls. // However, the first two entries of the perspective row may be really close to // 0 and the third may not be 1 due to a scale on the entire matrix. inline void fixup_matrix(GrMatrix* mat) { #ifndef SK_SCALAR_IS_FLOAT GrCrash("Expected scalar is float."); #endif static const GrScalar gTOL = 1.f / 100.f; GrAssert(GrScalarAbs(mat->get(SkMatrix::kMPersp0)) < gTOL); GrAssert(GrScalarAbs(mat->get(SkMatrix::kMPersp1)) < gTOL); float m33 = mat->get(SkMatrix::kMPersp2); if (1.f != m33) { m33 = 1.f / m33; mat->setAll(m33 * mat->get(SkMatrix::kMScaleX), m33 * mat->get(SkMatrix::kMSkewX), m33 * mat->get(SkMatrix::kMTransX), m33 * mat->get(SkMatrix::kMSkewY), m33 * mat->get(SkMatrix::kMScaleY), m33 * mat->get(SkMatrix::kMTransY), 0.f, 0.f, 1.f); } else { mat->setPerspX(0); mat->setPerspY(0); } } } // Compute a matrix that goes from the 2d space coordinates to UV space where // u^2-v = 0 specifies the quad. void GrPathUtils::quadDesignSpaceToUVCoordsMatrix(const SkPoint qPts[3], GrMatrix* matrix) { // can't make this static, no cons :( SkMatrix UVpts; #ifndef SK_SCALAR_IS_FLOAT GrCrash("Expected scalar is float."); #endif // We want M such that M * xy_pt = uv_pt // We know M * control_pts = [0 1/2 1] // [0 0 1] // [1 1 1] // We invert the control pt matrix and post concat to both sides to get M. UVpts.setAll(0, 0.5f, 1.f, 0, 0, 1.f, 1.f, 1.f, 1.f); matrix->setAll(qPts[0].fX, qPts[1].fX, qPts[2].fX, qPts[0].fY, qPts[1].fY, qPts[2].fY, 1.f, 1.f, 1.f); if (!matrix->invert(matrix)) { // The quad is degenerate. Hopefully this is rare. Find the pts that are // farthest apart to compute a line (unless it is really a pt). SkScalar maxD = qPts[0].distanceToSqd(qPts[1]); int maxEdge = 0; SkScalar d = qPts[1].distanceToSqd(qPts[2]); if (d > maxD) { maxD = d; maxEdge = 1; } d = qPts[2].distanceToSqd(qPts[0]); if (d > maxD) { maxD = d; maxEdge = 2; } // We could have a tolerance here, not sure if it would improve anything if (maxD > 0) { // Set the matrix to give (u = 0, v = distance_to_line) GrVec lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge]; // when looking from the point 0 down the line we want positive // distances to be to the left. This matches the non-degenerate // case. lineVec.setOrthog(lineVec, GrPoint::kLeft_Side); lineVec.dot(qPts[0]); matrix->setAll(0, 0, 0, lineVec.fX, lineVec.fY, -lineVec.dot(qPts[maxEdge]), 0, 0, 1.f); } else { // It's a point. It should cover zero area. Just set the matrix such // that (u, v) will always be far away from the quad. matrix->setAll(0, 0, 100 * SK_Scalar1, 0, 0, 100 * SK_Scalar1, 0, 0, 1.f); } } else { matrix->postConcat(UVpts); fixup_matrix(matrix); } } namespace { void convert_noninflect_cubic_to_quads(const SkPoint p[4], SkScalar tolScale, SkTArray* quads, int sublevel = 0) { SkVector ab = p[1]; ab -= p[0]; SkVector dc = p[2]; dc -= p[3]; static const SkScalar gLengthScale = 3 * SK_Scalar1 / 2; // base tolerance is 2 pixels in dev coords. const SkScalar distanceSqdTol = SkScalarMul(tolScale, 1 * SK_Scalar1); static const int kMaxSubdivs = 10; ab.scale(gLengthScale); dc.scale(gLengthScale); SkVector c0 = p[0]; c0 += ab; SkVector c1 = p[3]; c1 += dc; SkScalar dSqd = c0.distanceToSqd(c1); if (sublevel > kMaxSubdivs || dSqd <= distanceSqdTol) { SkPoint cAvg = c0; cAvg += c1; cAvg.scale(SK_ScalarHalf); SkPoint* pts = quads->push_back_n(3); pts[0] = p[0]; pts[1] = cAvg; pts[2] = p[3]; return; } else { SkPoint choppedPts[7]; SkChopCubicAtHalf(p, choppedPts); convert_noninflect_cubic_to_quads(choppedPts + 0, tolScale, quads, sublevel + 1); convert_noninflect_cubic_to_quads(choppedPts + 3, tolScale, quads, sublevel + 1); } } } void GrPathUtils::convertCubicToQuads(const GrPoint p[4], SkScalar tolScale, SkTArray* quads) { SkPoint chopped[10]; int count = SkChopCubicAtInflections(p, chopped); for (int i = 0; i < count; ++i) { SkPoint* cubic = chopped + 3*i; convert_noninflect_cubic_to_quads(cubic, tolScale, quads); } }