/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrPathRenderer_DEFINED #define GrPathRenderer_DEFINED #include "GrCaps.h" #include "GrContextPriv.h" #include "GrPaint.h" #include "GrRenderTargetContext.h" #include "GrShape.h" #include "GrUserStencilSettings.h" #include "SkDrawProcs.h" #include "SkTArray.h" class SkPath; class GrFixedClip; class GrHardClip; /** * Base class for drawing paths into a GrOpList. */ class SK_API GrPathRenderer : public SkRefCnt { public: GrPathRenderer(); /** * A caller may wish to use a path renderer to draw a path into the stencil buffer. However, * the path renderer itself may require use of the stencil buffer. Also a path renderer may * use a GrProcessor coverage stage that sets coverage to zero to eliminate pixels that are * covered by bounding geometry but outside the path. These exterior pixels would still be * rendered into the stencil. * * A GrPathRenderer can provide three levels of support for stenciling paths: * 1) kNoRestriction: This is the most general. The caller passes a GrPaint and calls drawPath(). * The path is rendered exactly as the draw state indicates including support * for simultaneous color and stenciling with arbitrary stenciling rules. * Pixels partially covered by AA paths are affected by the stencil settings. * 2) kStencilOnly: The path renderer cannot apply arbitrary stencil rules nor shade and stencil * simultaneously. The path renderer does support the stencilPath() function * which performs no color writes and writes a non-zero stencil value to pixels * covered by the path. * 3) kNoSupport: This path renderer cannot be used to stencil the path. */ enum StencilSupport { kNoSupport_StencilSupport, kStencilOnly_StencilSupport, kNoRestriction_StencilSupport, }; /** * This function is to get the stencil support for a particular path. The path's fill must * not be an inverse type. The path will always be filled and not stroked. * * @param shape the shape that will be drawn. Must be simple fill styled and non-inverse * filled. */ StencilSupport getStencilSupport(const GrShape& shape) const { SkDEBUGCODE(SkPath path;) SkDEBUGCODE(shape.asPath(&path);) SkASSERT(shape.style().isSimpleFill()); SkASSERT(!path.isInverseFillType()); return this->onGetStencilSupport(shape); } enum class CanDrawPath { kNo, kAsBackup, // i.e. This renderer is better than SW fallback if no others can draw the path. kYes }; struct CanDrawPathArgs { SkDEBUGCODE(CanDrawPathArgs() { memset(this, 0, sizeof(*this)); }) // For validation. const GrCaps* fCaps; const SkIRect* fClipConservativeBounds; const SkMatrix* fViewMatrix; const GrShape* fShape; GrAAType fAAType; // These next two are only used by GrStencilAndCoverPathRenderer bool fHasUserStencilSettings; #ifdef SK_DEBUG void validate() const { SkASSERT(fCaps); SkASSERT(fClipConservativeBounds); SkASSERT(fViewMatrix); SkASSERT(fShape); } #endif }; /** * Returns how well this path renderer is able to render the given path. Returning kNo or * kAsBackup allows the caller to keep searching for a better path renderer. This function is * called when searching for the best path renderer to draw a path. */ CanDrawPath canDrawPath(const CanDrawPathArgs& args) const { SkDEBUGCODE(args.validate();) return this->onCanDrawPath(args); } struct DrawPathArgs { GrContext* fContext; GrPaint&& fPaint; const GrUserStencilSettings* fUserStencilSettings; GrRenderTargetContext* fRenderTargetContext; const GrClip* fClip; const SkIRect* fClipConservativeBounds; const SkMatrix* fViewMatrix; const GrShape* fShape; GrAAType fAAType; bool fGammaCorrect; #ifdef SK_DEBUG void validate() const { SkASSERT(fContext); SkASSERT(fUserStencilSettings); SkASSERT(fRenderTargetContext); SkASSERT(fClip); SkASSERT(fClipConservativeBounds); SkASSERT(fViewMatrix); SkASSERT(fShape); } #endif }; /** * Draws the path into the draw target. If getStencilSupport() would return kNoRestriction then * the subclass must respect the stencil settings. */ bool drawPath(const DrawPathArgs& args) { SkDEBUGCODE(args.validate();) #ifdef SK_DEBUG CanDrawPathArgs canArgs; canArgs.fCaps = args.fContext->contextPriv().caps(); canArgs.fClipConservativeBounds = args.fClipConservativeBounds; canArgs.fViewMatrix = args.fViewMatrix; canArgs.fShape = args.fShape; canArgs.fAAType = args.fAAType; canArgs.validate(); canArgs.fHasUserStencilSettings = !args.fUserStencilSettings->isUnused(); SkASSERT(!(canArgs.fAAType == GrAAType::kMSAA && GrFSAAType::kUnifiedMSAA != args.fRenderTargetContext->fsaaType())); SkASSERT(!(canArgs.fAAType == GrAAType::kMixedSamples && GrFSAAType::kMixedSamples != args.fRenderTargetContext->fsaaType())); SkASSERT(CanDrawPath::kNo != this->canDrawPath(canArgs)); if (!args.fUserStencilSettings->isUnused()) { SkPath path; args.fShape->asPath(&path); SkASSERT(args.fShape->style().isSimpleFill()); SkASSERT(kNoRestriction_StencilSupport == this->getStencilSupport(*args.fShape)); } #endif return this->onDrawPath(args); } /** * Args to stencilPath(). fAAType cannot be kCoverage. */ struct StencilPathArgs { SkDEBUGCODE(StencilPathArgs() { memset(this, 0, sizeof(*this)); }) // For validation. GrContext* fContext; GrRenderTargetContext* fRenderTargetContext; const GrHardClip* fClip; const SkIRect* fClipConservativeBounds; const SkMatrix* fViewMatrix; GrAAType fAAType; const GrShape* fShape; #ifdef SK_DEBUG void validate() const { SkASSERT(fContext); SkASSERT(fRenderTargetContext); SkASSERT(fClipConservativeBounds); SkASSERT(fViewMatrix); SkASSERT(fShape); SkASSERT(fShape->style().isSimpleFill()); SkASSERT(GrAAType::kCoverage != fAAType); SkPath path; fShape->asPath(&path); SkASSERT(!path.isInverseFillType()); } #endif }; /** * Draws the path to the stencil buffer. Assume the writable stencil bits are already * initialized to zero. The pixels inside the path will have non-zero stencil values afterwards. */ void stencilPath(const StencilPathArgs& args) { SkDEBUGCODE(args.validate();) SkASSERT(kNoSupport_StencilSupport != this->getStencilSupport(*args.fShape)); this->onStencilPath(args); } // Helper for determining if we can treat a thin stroke as a hairline w/ coverage. // If we can, we draw lots faster (raster device does this same test). static bool IsStrokeHairlineOrEquivalent(const GrStyle& style, const SkMatrix& matrix, SkScalar* outCoverage) { if (style.pathEffect()) { return false; } const SkStrokeRec& stroke = style.strokeRec(); if (stroke.isHairlineStyle()) { if (outCoverage) { *outCoverage = SK_Scalar1; } return true; } return stroke.getStyle() == SkStrokeRec::kStroke_Style && SkDrawTreatAAStrokeAsHairline(stroke.getWidth(), matrix, outCoverage); } protected: // Helper for getting the device bounds of a path. Inverse filled paths will have bounds set // by devSize. Non-inverse path bounds will not necessarily be clipped to devSize. static void GetPathDevBounds(const SkPath& path, int devW, int devH, const SkMatrix& matrix, SkRect* bounds); private: /** * Subclass overrides if it has any limitations of stenciling support. */ virtual StencilSupport onGetStencilSupport(const GrShape&) const { return kNoRestriction_StencilSupport; } /** * Subclass implementation of drawPath() */ virtual bool onDrawPath(const DrawPathArgs& args) = 0; /** * Subclass implementation of canDrawPath() */ virtual CanDrawPath onCanDrawPath(const CanDrawPathArgs& args) const = 0; /** * Subclass implementation of stencilPath(). Subclass must override iff it ever returns * kStencilOnly in onGetStencilSupport(). */ virtual void onStencilPath(const StencilPathArgs& args) { static constexpr GrUserStencilSettings kIncrementStencil( GrUserStencilSettings::StaticInit< 0xffff, GrUserStencilTest::kAlways, 0xffff, GrUserStencilOp::kReplace, GrUserStencilOp::kReplace, 0xffff>() ); GrPaint paint; DrawPathArgs drawArgs{args.fContext, std::move(paint), &kIncrementStencil, args.fRenderTargetContext, nullptr, // clip args.fClipConservativeBounds, args.fViewMatrix, args.fShape, args.fAAType, false}; this->drawPath(drawArgs); } typedef SkRefCnt INHERITED; }; #endif