/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrPath.h" namespace { // Verb count limit for generating path key from content of a volatile path. // The value should accomodate at least simple rects and rrects. static const int kSimpleVolatilePathVerbLimit = 10; inline static bool compute_key_for_line_path(const SkPath& path, const GrStrokeInfo& stroke, GrUniqueKey* key) { SkPoint pts[2]; if (!path.isLine(pts)) { return false; } SK_COMPILE_ASSERT((sizeof(pts) % sizeof(uint32_t)) == 0 && sizeof(pts) > sizeof(uint32_t), pts_needs_padding); const int kBaseData32Cnt = 1 + sizeof(pts) / sizeof(uint32_t); int strokeDataCnt = stroke.computeUniqueKeyFragmentData32Cnt(); static const GrUniqueKey::Domain kOvalPathDomain = GrUniqueKey::GenerateDomain(); GrUniqueKey::Builder builder(key, kOvalPathDomain, kBaseData32Cnt + strokeDataCnt); builder[0] = path.getFillType(); memcpy(&builder[1], &pts, sizeof(pts)); if (strokeDataCnt > 0) { stroke.asUniqueKeyFragment(&builder[kBaseData32Cnt]); } return true; } inline static bool compute_key_for_oval_path(const SkPath& path, const GrStrokeInfo& stroke, GrUniqueKey* key) { SkRect rect; if (!path.isOval(&rect)) { return false; } SK_COMPILE_ASSERT((sizeof(rect) % sizeof(uint32_t)) == 0 && sizeof(rect) > sizeof(uint32_t), rect_needs_padding); const int kBaseData32Cnt = 1 + sizeof(rect) / sizeof(uint32_t); int strokeDataCnt = stroke.computeUniqueKeyFragmentData32Cnt(); static const GrUniqueKey::Domain kOvalPathDomain = GrUniqueKey::GenerateDomain(); GrUniqueKey::Builder builder(key, kOvalPathDomain, kBaseData32Cnt + strokeDataCnt); builder[0] = path.getFillType(); memcpy(&builder[1], &rect, sizeof(rect)); if (strokeDataCnt > 0) { stroke.asUniqueKeyFragment(&builder[kBaseData32Cnt]); } return true; } // Encodes the full path data to the unique key for very small, volatile paths. This is typically // hit when clipping stencils the clip stack. Intention is that this handles rects too, since // SkPath::isRect seems to do non-trivial amount of work. inline static bool compute_key_for_simple_path(const SkPath& path, const GrStrokeInfo& stroke, GrUniqueKey* key) { if (!path.isVolatile()) { return false; } // The check below should take care of negative values casted positive. const int verbCnt = path.countVerbs(); if (verbCnt > kSimpleVolatilePathVerbLimit) { return false; } // If somebody goes wild with the constant, it might cause an overflow. SK_COMPILE_ASSERT(kSimpleVolatilePathVerbLimit <= 100, big_simple_volatile_path_verb_limit_may_cause_overflow); const int pointCnt = path.countPoints(); if (pointCnt < 0) { SkASSERT(false); return false; } // Construct counts that align as uint32_t counts. #define ARRAY_DATA32_COUNT(array_type, count) \ static_cast((((count) * sizeof(array_type) + sizeof(uint32_t) - 1) / sizeof(uint32_t))) const int verbData32Cnt = ARRAY_DATA32_COUNT(uint8_t, verbCnt); const int pointData32Cnt = ARRAY_DATA32_COUNT(SkPoint, pointCnt); #undef ARRAY_DATA32_COUNT // The unique key data is a "message" with following fragments: // 0) domain, key length, uint32_t for fill type and uint32_t for verbCnt // (fragment 0, fixed size) // 1) verb and point data (varying size) // 2) stroke data (varying size) const int baseData32Cnt = 2 + verbData32Cnt + pointData32Cnt; const int strokeDataCnt = stroke.computeUniqueKeyFragmentData32Cnt(); static const GrUniqueKey::Domain kSimpleVolatilePathDomain = GrUniqueKey::GenerateDomain(); GrUniqueKey::Builder builder(key, kSimpleVolatilePathDomain, baseData32Cnt + strokeDataCnt); int i = 0; builder[i++] = path.getFillType(); // Serialize the verbCnt to make the whole message unambiguous. // We serialize two variable length fragments to the message: // * verb and point data (fragment 1) // * stroke data (fragment 2) // "Proof:" // Verb count establishes unambiguous verb data. // Unambiguous verb data establishes unambiguous point data, making fragment 1 unambiguous. // Unambiguous fragment 1 establishes unambiguous fragment 2, since the length of the message // has been established. builder[i++] = SkToU32(verbCnt); // The path limit is compile-asserted above, so the cast is ok. // Fill the last uint32_t with 0 first, since the last uint8_ts of the uint32_t may be // uninitialized. This does not produce ambiguous verb data, since we have serialized the exact // verb count. if (verbData32Cnt != static_cast((verbCnt * sizeof(uint8_t) / sizeof(uint32_t)))) { builder[i + verbData32Cnt - 1] = 0; } path.getVerbs(reinterpret_cast(&builder[i]), verbCnt); i += verbData32Cnt; SK_COMPILE_ASSERT(((sizeof(SkPoint) % sizeof(uint32_t)) == 0) && sizeof(SkPoint) > sizeof(uint32_t), skpoint_array_needs_padding); // Here we assume getPoints does a memcpy, so that we do not need to worry about the alignment. path.getPoints(reinterpret_cast(&builder[i]), pointCnt); SkDEBUGCODE(i += pointData32Cnt); SkASSERT(i == baseData32Cnt); if (strokeDataCnt > 0) { stroke.asUniqueKeyFragment(&builder[baseData32Cnt]); } return true; } inline static void compute_key_for_general_path(const SkPath& path, const GrStrokeInfo& stroke, GrUniqueKey* key) { const int kBaseData32Cnt = 2; int strokeDataCnt = stroke.computeUniqueKeyFragmentData32Cnt(); static const GrUniqueKey::Domain kGeneralPathDomain = GrUniqueKey::GenerateDomain(); GrUniqueKey::Builder builder(key, kGeneralPathDomain, kBaseData32Cnt + strokeDataCnt); builder[0] = path.getGenerationID(); builder[1] = path.getFillType(); if (strokeDataCnt > 0) { stroke.asUniqueKeyFragment(&builder[kBaseData32Cnt]); } } } void GrPath::ComputeKey(const SkPath& path, const GrStrokeInfo& stroke, GrUniqueKey* key, bool* outIsVolatile) { if (compute_key_for_line_path(path, stroke, key)) { *outIsVolatile = false; return; } if (compute_key_for_oval_path(path, stroke, key)) { *outIsVolatile = false; return; } if (compute_key_for_simple_path(path, stroke, key)) { *outIsVolatile = false; return; } compute_key_for_general_path(path, stroke, key); *outIsVolatile = path.isVolatile(); }