/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrOvalRenderer.h" #include "GrBatchFlushState.h" #include "GrBatchTest.h" #include "GrGeometryProcessor.h" #include "GrInvariantOutput.h" #include "GrProcessor.h" #include "GrResourceProvider.h" #include "SkRRect.h" #include "SkStrokeRec.h" #include "batches/GrVertexBatch.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLGeometryProcessor.h" #include "glsl/GrGLSLProgramDataManager.h" #include "glsl/GrGLSLVarying.h" #include "glsl/GrGLSLVertexShaderBuilder.h" #include "glsl/GrGLSLUniformHandler.h" #include "glsl/GrGLSLUtil.h" // TODO(joshualitt) - Break this file up during GrBatch post implementation cleanup namespace { struct CircleVertex { SkPoint fPos; GrColor fColor; SkPoint fOffset; SkScalar fOuterRadius; SkScalar fInnerRadius; }; struct EllipseVertex { SkPoint fPos; GrColor fColor; SkPoint fOffset; SkPoint fOuterRadii; SkPoint fInnerRadii; }; struct DIEllipseVertex { SkPoint fPos; GrColor fColor; SkPoint fOuterOffset; SkPoint fInnerOffset; }; inline bool circle_stays_circle(const SkMatrix& m) { return m.isSimilarity(); } } /////////////////////////////////////////////////////////////////////////////// /** * The output of this effect is a modulation of the input color and coverage for a circle. It * operates in a space normalized by the circle radius (outer radius in the case of a stroke) * with origin at the circle center. Three vertex attributes are used: * vec2f : position in device space of the bounding geometry vertices * vec4ub: color * vec4f : (p.xy, outerRad, innerRad) * p is the position in the normalized space. * outerRad is the outerRadius in device space. * innerRad is the innerRadius in normalized space (ignored if not stroking). */ class CircleGeometryProcessor : public GrGeometryProcessor { public: CircleGeometryProcessor(bool stroke, const SkMatrix& localMatrix) : fLocalMatrix(localMatrix){ this->initClassID(); fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType, kHigh_GrSLPrecision)); fInColor = &this->addVertexAttrib(Attribute("inColor", kVec4ub_GrVertexAttribType)); fInCircleEdge = &this->addVertexAttrib(Attribute("inCircleEdge", kVec4f_GrVertexAttribType)); fStroke = stroke; } const Attribute* inPosition() const { return fInPosition; } const Attribute* inColor() const { return fInColor; } const Attribute* inCircleEdge() const { return fInCircleEdge; } const SkMatrix& localMatrix() const { return fLocalMatrix; } virtual ~CircleGeometryProcessor() {} const char* name() const override { return "CircleEdge"; } class GLSLProcessor : public GrGLSLGeometryProcessor { public: GLSLProcessor() {} void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{ const CircleGeometryProcessor& cgp = args.fGP.cast(); GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; // emit attributes varyingHandler->emitAttributes(cgp); GrGLSLVertToFrag v(kVec4f_GrSLType); varyingHandler->addVarying("CircleEdge", &v); vertBuilder->codeAppendf("%s = %s;", v.vsOut(), cgp.inCircleEdge()->fName); GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder; // setup pass through color varyingHandler->addPassThroughAttribute(cgp.inColor(), args.fOutputColor); // Setup position this->setupPosition(vertBuilder, gpArgs, cgp.inPosition()->fName); // emit transforms this->emitTransforms(vertBuilder, varyingHandler, uniformHandler, gpArgs->fPositionVar, cgp.inPosition()->fName, cgp.localMatrix(), args.fTransformsIn, args.fTransformsOut); fragBuilder->codeAppendf("float d = length(%s.xy);", v.fsIn()); fragBuilder->codeAppendf("float edgeAlpha = clamp(%s.z * (1.0 - d), 0.0, 1.0);", v.fsIn()); if (cgp.fStroke) { fragBuilder->codeAppendf("float innerAlpha = clamp(%s.z * (d - %s.w), 0.0, 1.0);", v.fsIn(), v.fsIn()); fragBuilder->codeAppend("edgeAlpha *= innerAlpha;"); } fragBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage); } static void GenKey(const GrGeometryProcessor& gp, const GrGLSLCaps&, GrProcessorKeyBuilder* b) { const CircleGeometryProcessor& cgp = gp.cast(); uint16_t key = cgp.fStroke ? 0x1 : 0x0; key |= cgp.localMatrix().hasPerspective() ? 0x2 : 0x0; b->add32(key); } void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& gp) override { } void setTransformData(const GrPrimitiveProcessor& primProc, const GrGLSLProgramDataManager& pdman, int index, const SkTArray& transforms) override { this->setTransformDataHelper(primProc, pdman, index, transforms); } private: typedef GrGLSLGeometryProcessor INHERITED; }; void getGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override { GLSLProcessor::GenKey(*this, caps, b); } GrGLSLPrimitiveProcessor* createGLSLInstance(const GrGLSLCaps&) const override { return new GLSLProcessor(); } private: SkMatrix fLocalMatrix; const Attribute* fInPosition; const Attribute* fInColor; const Attribute* fInCircleEdge; bool fStroke; GR_DECLARE_GEOMETRY_PROCESSOR_TEST; typedef GrGeometryProcessor INHERITED; }; GR_DEFINE_GEOMETRY_PROCESSOR_TEST(CircleGeometryProcessor); const GrGeometryProcessor* CircleGeometryProcessor::TestCreate(GrProcessorTestData* d) { return new CircleGeometryProcessor(d->fRandom->nextBool(), GrTest::TestMatrix(d->fRandom)); } /////////////////////////////////////////////////////////////////////////////// /** * The output of this effect is a modulation of the input color and coverage for an axis-aligned * ellipse, specified as a 2D offset from center, and the reciprocals of the outer and inner radii, * in both x and y directions. * * We are using an implicit function of x^2/a^2 + y^2/b^2 - 1 = 0. */ class EllipseGeometryProcessor : public GrGeometryProcessor { public: EllipseGeometryProcessor(bool stroke, const SkMatrix& localMatrix) : fLocalMatrix(localMatrix) { this->initClassID(); fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType)); fInColor = &this->addVertexAttrib(Attribute("inColor", kVec4ub_GrVertexAttribType)); fInEllipseOffset = &this->addVertexAttrib(Attribute("inEllipseOffset", kVec2f_GrVertexAttribType)); fInEllipseRadii = &this->addVertexAttrib(Attribute("inEllipseRadii", kVec4f_GrVertexAttribType)); fStroke = stroke; } virtual ~EllipseGeometryProcessor() {} const char* name() const override { return "EllipseEdge"; } const Attribute* inPosition() const { return fInPosition; } const Attribute* inColor() const { return fInColor; } const Attribute* inEllipseOffset() const { return fInEllipseOffset; } const Attribute* inEllipseRadii() const { return fInEllipseRadii; } const SkMatrix& localMatrix() const { return fLocalMatrix; } class GLSLProcessor : public GrGLSLGeometryProcessor { public: GLSLProcessor() {} void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{ const EllipseGeometryProcessor& egp = args.fGP.cast(); GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; // emit attributes varyingHandler->emitAttributes(egp); GrGLSLVertToFrag ellipseOffsets(kVec2f_GrSLType); varyingHandler->addVarying("EllipseOffsets", &ellipseOffsets); vertBuilder->codeAppendf("%s = %s;", ellipseOffsets.vsOut(), egp.inEllipseOffset()->fName); GrGLSLVertToFrag ellipseRadii(kVec4f_GrSLType); varyingHandler->addVarying("EllipseRadii", &ellipseRadii); vertBuilder->codeAppendf("%s = %s;", ellipseRadii.vsOut(), egp.inEllipseRadii()->fName); GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder; // setup pass through color varyingHandler->addPassThroughAttribute(egp.inColor(), args.fOutputColor); // Setup position this->setupPosition(vertBuilder, gpArgs, egp.inPosition()->fName); // emit transforms this->emitTransforms(vertBuilder, varyingHandler, uniformHandler, gpArgs->fPositionVar, egp.inPosition()->fName, egp.localMatrix(), args.fTransformsIn, args.fTransformsOut); // for outer curve fragBuilder->codeAppendf("vec2 scaledOffset = %s*%s.xy;", ellipseOffsets.fsIn(), ellipseRadii.fsIn()); fragBuilder->codeAppend("float test = dot(scaledOffset, scaledOffset) - 1.0;"); fragBuilder->codeAppendf("vec2 grad = 2.0*scaledOffset*%s.xy;", ellipseRadii.fsIn()); fragBuilder->codeAppend("float grad_dot = dot(grad, grad);"); // avoid calling inversesqrt on zero. fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);"); fragBuilder->codeAppend("float invlen = inversesqrt(grad_dot);"); fragBuilder->codeAppend("float edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);"); // for inner curve if (egp.fStroke) { fragBuilder->codeAppendf("scaledOffset = %s*%s.zw;", ellipseOffsets.fsIn(), ellipseRadii.fsIn()); fragBuilder->codeAppend("test = dot(scaledOffset, scaledOffset) - 1.0;"); fragBuilder->codeAppendf("grad = 2.0*scaledOffset*%s.zw;", ellipseRadii.fsIn()); fragBuilder->codeAppend("invlen = inversesqrt(dot(grad, grad));"); fragBuilder->codeAppend("edgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);"); } fragBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage); } static void GenKey(const GrGeometryProcessor& gp, const GrGLSLCaps&, GrProcessorKeyBuilder* b) { const EllipseGeometryProcessor& egp = gp.cast(); uint16_t key = egp.fStroke ? 0x1 : 0x0; key |= egp.localMatrix().hasPerspective() ? 0x2 : 0x0; b->add32(key); } void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& gp) override { } void setTransformData(const GrPrimitiveProcessor& primProc, const GrGLSLProgramDataManager& pdman, int index, const SkTArray& transforms) override { this->setTransformDataHelper(primProc, pdman, index, transforms); } private: typedef GrGLSLGeometryProcessor INHERITED; }; void getGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override { GLSLProcessor::GenKey(*this, caps, b); } GrGLSLPrimitiveProcessor* createGLSLInstance(const GrGLSLCaps&) const override { return new GLSLProcessor(); } private: const Attribute* fInPosition; const Attribute* fInColor; const Attribute* fInEllipseOffset; const Attribute* fInEllipseRadii; SkMatrix fLocalMatrix; bool fStroke; GR_DECLARE_GEOMETRY_PROCESSOR_TEST; typedef GrGeometryProcessor INHERITED; }; GR_DEFINE_GEOMETRY_PROCESSOR_TEST(EllipseGeometryProcessor); const GrGeometryProcessor* EllipseGeometryProcessor::TestCreate(GrProcessorTestData* d) { return new EllipseGeometryProcessor(d->fRandom->nextBool(), GrTest::TestMatrix(d->fRandom)); } /////////////////////////////////////////////////////////////////////////////// /** * The output of this effect is a modulation of the input color and coverage for an ellipse, * specified as a 2D offset from center for both the outer and inner paths (if stroked). The * implict equation used is for a unit circle (x^2 + y^2 - 1 = 0) and the edge corrected by * using differentials. * * The result is device-independent and can be used with any affine matrix. */ enum class DIEllipseStyle { kStroke = 0, kHairline, kFill }; class DIEllipseGeometryProcessor : public GrGeometryProcessor { public: DIEllipseGeometryProcessor(const SkMatrix& viewMatrix, DIEllipseStyle style) : fViewMatrix(viewMatrix) { this->initClassID(); fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType, kHigh_GrSLPrecision)); fInColor = &this->addVertexAttrib(Attribute("inColor", kVec4ub_GrVertexAttribType)); fInEllipseOffsets0 = &this->addVertexAttrib(Attribute("inEllipseOffsets0", kVec2f_GrVertexAttribType)); fInEllipseOffsets1 = &this->addVertexAttrib(Attribute("inEllipseOffsets1", kVec2f_GrVertexAttribType)); fStyle = style; } virtual ~DIEllipseGeometryProcessor() {} const char* name() const override { return "DIEllipseEdge"; } const Attribute* inPosition() const { return fInPosition; } const Attribute* inColor() const { return fInColor; } const Attribute* inEllipseOffsets0() const { return fInEllipseOffsets0; } const Attribute* inEllipseOffsets1() const { return fInEllipseOffsets1; } const SkMatrix& viewMatrix() const { return fViewMatrix; } class GLSLProcessor : public GrGLSLGeometryProcessor { public: GLSLProcessor() : fViewMatrix(SkMatrix::InvalidMatrix()) {} void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { const DIEllipseGeometryProcessor& diegp = args.fGP.cast(); GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; // emit attributes varyingHandler->emitAttributes(diegp); GrGLSLVertToFrag offsets0(kVec2f_GrSLType); varyingHandler->addVarying("EllipseOffsets0", &offsets0); vertBuilder->codeAppendf("%s = %s;", offsets0.vsOut(), diegp.inEllipseOffsets0()->fName); GrGLSLVertToFrag offsets1(kVec2f_GrSLType); varyingHandler->addVarying("EllipseOffsets1", &offsets1); vertBuilder->codeAppendf("%s = %s;", offsets1.vsOut(), diegp.inEllipseOffsets1()->fName); GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder; varyingHandler->addPassThroughAttribute(diegp.inColor(), args.fOutputColor); // Setup position this->setupPosition(vertBuilder, uniformHandler, gpArgs, diegp.inPosition()->fName, diegp.viewMatrix(), &fViewMatrixUniform); // emit transforms this->emitTransforms(vertBuilder, varyingHandler, uniformHandler, gpArgs->fPositionVar, diegp.inPosition()->fName, args.fTransformsIn, args.fTransformsOut); SkAssertResult(fragBuilder->enableFeature( GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); // for outer curve fragBuilder->codeAppendf("vec2 scaledOffset = %s.xy;", offsets0.fsIn()); fragBuilder->codeAppend("float test = dot(scaledOffset, scaledOffset) - 1.0;"); fragBuilder->codeAppendf("vec2 duvdx = dFdx(%s);", offsets0.fsIn()); fragBuilder->codeAppendf("vec2 duvdy = dFdy(%s);", offsets0.fsIn()); fragBuilder->codeAppendf("vec2 grad = vec2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y," " 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);", offsets0.fsIn(), offsets0.fsIn(), offsets0.fsIn(), offsets0.fsIn()); fragBuilder->codeAppend("float grad_dot = dot(grad, grad);"); // avoid calling inversesqrt on zero. fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);"); fragBuilder->codeAppend("float invlen = inversesqrt(grad_dot);"); if (DIEllipseStyle::kHairline == diegp.fStyle) { // can probably do this with one step fragBuilder->codeAppend("float edgeAlpha = clamp(1.0-test*invlen, 0.0, 1.0);"); fragBuilder->codeAppend("edgeAlpha *= clamp(1.0+test*invlen, 0.0, 1.0);"); } else { fragBuilder->codeAppend("float edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);"); } // for inner curve if (DIEllipseStyle::kStroke == diegp.fStyle) { fragBuilder->codeAppendf("scaledOffset = %s.xy;", offsets1.fsIn()); fragBuilder->codeAppend("test = dot(scaledOffset, scaledOffset) - 1.0;"); fragBuilder->codeAppendf("duvdx = dFdx(%s);", offsets1.fsIn()); fragBuilder->codeAppendf("duvdy = dFdy(%s);", offsets1.fsIn()); fragBuilder->codeAppendf("grad = vec2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y," " 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);", offsets1.fsIn(), offsets1.fsIn(), offsets1.fsIn(), offsets1.fsIn()); fragBuilder->codeAppend("invlen = inversesqrt(dot(grad, grad));"); fragBuilder->codeAppend("edgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);"); } fragBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage); } static void GenKey(const GrGeometryProcessor& gp, const GrGLSLCaps&, GrProcessorKeyBuilder* b) { const DIEllipseGeometryProcessor& diegp = gp.cast(); uint16_t key = static_cast(diegp.fStyle); key |= ComputePosKey(diegp.viewMatrix()) << 10; b->add32(key); } void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& gp) override { const DIEllipseGeometryProcessor& diegp = gp.cast(); if (!diegp.viewMatrix().isIdentity() && !fViewMatrix.cheapEqualTo(diegp.viewMatrix())) { fViewMatrix = diegp.viewMatrix(); float viewMatrix[3 * 3]; GrGLSLGetMatrix<3>(viewMatrix, fViewMatrix); pdman.setMatrix3f(fViewMatrixUniform, viewMatrix); } } private: SkMatrix fViewMatrix; UniformHandle fViewMatrixUniform; typedef GrGLSLGeometryProcessor INHERITED; }; void getGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override { GLSLProcessor::GenKey(*this, caps, b); } GrGLSLPrimitiveProcessor* createGLSLInstance(const GrGLSLCaps&) const override { return new GLSLProcessor(); } private: const Attribute* fInPosition; const Attribute* fInColor; const Attribute* fInEllipseOffsets0; const Attribute* fInEllipseOffsets1; SkMatrix fViewMatrix; DIEllipseStyle fStyle; GR_DECLARE_GEOMETRY_PROCESSOR_TEST; typedef GrGeometryProcessor INHERITED; }; GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DIEllipseGeometryProcessor); const GrGeometryProcessor* DIEllipseGeometryProcessor::TestCreate(GrProcessorTestData* d) { return new DIEllipseGeometryProcessor(GrTest::TestMatrix(d->fRandom), (DIEllipseStyle)(d->fRandom->nextRangeU(0,2))); } /////////////////////////////////////////////////////////////////////////////// GrDrawBatch* GrOvalRenderer::CreateOvalBatch(GrColor color, const SkMatrix& viewMatrix, const SkRect& oval, const SkStrokeRec& stroke, GrShaderCaps* shaderCaps) { // we can draw circles if (SkScalarNearlyEqual(oval.width(), oval.height()) && circle_stays_circle(viewMatrix)) { return CreateCircleBatch(color, viewMatrix, oval, stroke); } // if we have shader derivative support, render as device-independent if (shaderCaps->shaderDerivativeSupport()) { return CreateDIEllipseBatch(color, viewMatrix, oval, stroke); } // otherwise axis-aligned ellipses only if (viewMatrix.rectStaysRect()) { return CreateEllipseBatch(color, viewMatrix, oval, stroke); } return nullptr; } /////////////////////////////////////////////////////////////////////////////// class CircleBatch : public GrVertexBatch { public: DEFINE_BATCH_CLASS_ID struct Geometry { SkRect fDevBounds; SkScalar fInnerRadius; SkScalar fOuterRadius; GrColor fColor; }; CircleBatch(const Geometry& geometry, const SkMatrix& viewMatrix, bool stroked) : INHERITED(ClassID()) , fStroked(stroked) , fViewMatrixIfUsingLocalCoords(viewMatrix) { fGeoData.push_back(geometry); this->setBounds(geometry.fDevBounds); } const char* name() const override { return "CircleBatch"; } SkString dumpInfo() const override { SkString string; for (int i = 0; i < fGeoData.count(); ++i) { string.appendf("Color: 0x%08x Rect [L: %.2f, T: %.2f, R: %.2f, B: %.2f]," "InnerRad: %.2f, OuterRad: %.2f\n", fGeoData[i].fColor, fGeoData[i].fDevBounds.fLeft, fGeoData[i].fDevBounds.fTop, fGeoData[i].fDevBounds.fRight, fGeoData[i].fDevBounds.fBottom, fGeoData[i].fInnerRadius, fGeoData[i].fOuterRadius); } string.append(INHERITED::dumpInfo()); return string; } void computePipelineOptimizations(GrInitInvariantOutput* color, GrInitInvariantOutput* coverage, GrBatchToXPOverrides* overrides) const override { // When this is called on a batch, there is only one geometry bundle color->setKnownFourComponents(fGeoData[0].fColor); coverage->setUnknownSingleComponent(); } private: void initBatchTracker(const GrXPOverridesForBatch& overrides) override { // Handle any overrides that affect our GP. overrides.getOverrideColorIfSet(&fGeoData[0].fColor); if (!overrides.readsLocalCoords()) { fViewMatrixIfUsingLocalCoords.reset(); } } void onPrepareDraws(Target* target) const override { SkMatrix localMatrix; if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) { return; } // Setup geometry processor SkAutoTUnref gp(new CircleGeometryProcessor(fStroked, localMatrix)); target->initDraw(gp); int instanceCount = fGeoData.count(); size_t vertexStride = gp->getVertexStride(); SkASSERT(vertexStride == sizeof(CircleVertex)); QuadHelper helper; CircleVertex* verts = reinterpret_cast(helper.init(target, vertexStride, instanceCount)); if (!verts) { return; } for (int i = 0; i < instanceCount; i++) { const Geometry& geom = fGeoData[i]; GrColor color = geom.fColor; SkScalar innerRadius = geom.fInnerRadius; SkScalar outerRadius = geom.fOuterRadius; const SkRect& bounds = geom.fDevBounds; // The inner radius in the vertex data must be specified in normalized space. innerRadius = innerRadius / outerRadius; verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); verts[0].fColor = color; verts[0].fOffset = SkPoint::Make(-1, -1); verts[0].fOuterRadius = outerRadius; verts[0].fInnerRadius = innerRadius; verts[1].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); verts[1].fColor = color; verts[1].fOffset = SkPoint::Make(-1, 1); verts[1].fOuterRadius = outerRadius; verts[1].fInnerRadius = innerRadius; verts[2].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); verts[2].fColor = color; verts[2].fOffset = SkPoint::Make(1, 1); verts[2].fOuterRadius = outerRadius; verts[2].fInnerRadius = innerRadius; verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); verts[3].fColor = color; verts[3].fOffset = SkPoint::Make(1, -1); verts[3].fOuterRadius = outerRadius; verts[3].fInnerRadius = innerRadius; verts += kVerticesPerQuad; } helper.recordDraw(target); } bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { CircleBatch* that = t->cast(); if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), that->bounds(), caps)) { return false; } if (this->fStroked != that->fStroked) { return false; } if (!fViewMatrixIfUsingLocalCoords.cheapEqualTo(that->fViewMatrixIfUsingLocalCoords)) { return false; } fGeoData.push_back_n(that->fGeoData.count(), that->fGeoData.begin()); this->joinBounds(that->bounds()); return true; } bool fStroked; SkMatrix fViewMatrixIfUsingLocalCoords; SkSTArray<1, Geometry, true> fGeoData; typedef GrVertexBatch INHERITED; }; static GrDrawBatch* create_circle_batch(GrColor color, const SkMatrix& viewMatrix, const SkRect& circle, const SkStrokeRec& stroke) { SkPoint center = SkPoint::Make(circle.centerX(), circle.centerY()); viewMatrix.mapPoints(¢er, 1); SkScalar radius = viewMatrix.mapRadius(SkScalarHalf(circle.width())); SkScalar strokeWidth = viewMatrix.mapRadius(stroke.getWidth()); SkStrokeRec::Style style = stroke.getStyle(); bool isStrokeOnly = SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style; bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; SkScalar innerRadius = 0.0f; SkScalar outerRadius = radius; SkScalar halfWidth = 0; if (hasStroke) { if (SkScalarNearlyZero(strokeWidth)) { halfWidth = SK_ScalarHalf; } else { halfWidth = SkScalarHalf(strokeWidth); } outerRadius += halfWidth; if (isStrokeOnly) { innerRadius = radius - halfWidth; } } // The radii are outset for two reasons. First, it allows the shader to simply perform simpler // computation because the computed alpha is zero, rather than 50%, at the radius. // Second, the outer radius is used to compute the verts of the bounding box that is rendered // and the outset ensures the box will cover all partially covered by the circle. outerRadius += SK_ScalarHalf; innerRadius -= SK_ScalarHalf; CircleBatch::Geometry geometry; geometry.fColor = color; geometry.fInnerRadius = innerRadius; geometry.fOuterRadius = outerRadius; geometry.fDevBounds = SkRect::MakeLTRB(center.fX - outerRadius, center.fY - outerRadius, center.fX + outerRadius, center.fY + outerRadius); return new CircleBatch(geometry, viewMatrix, isStrokeOnly && innerRadius > 0); } GrDrawBatch* GrOvalRenderer::CreateCircleBatch(GrColor color, const SkMatrix& viewMatrix, const SkRect& circle, const SkStrokeRec& stroke) { return create_circle_batch(color, viewMatrix, circle, stroke); } /////////////////////////////////////////////////////////////////////////////// class EllipseBatch : public GrVertexBatch { public: DEFINE_BATCH_CLASS_ID struct Geometry { SkRect fDevBounds; SkScalar fXRadius; SkScalar fYRadius; SkScalar fInnerXRadius; SkScalar fInnerYRadius; GrColor fColor; }; EllipseBatch(const Geometry& geometry, const SkMatrix& viewMatrix, bool stroked) : INHERITED(ClassID()) , fStroked(stroked) , fViewMatrixIfUsingLocalCoords(viewMatrix) { fGeoData.push_back(geometry); this->setBounds(geometry.fDevBounds); } const char* name() const override { return "EllipseBatch"; } void computePipelineOptimizations(GrInitInvariantOutput* color, GrInitInvariantOutput* coverage, GrBatchToXPOverrides* overrides) const override { // When this is called on a batch, there is only one geometry bundle color->setKnownFourComponents(fGeoData[0].fColor); coverage->setUnknownSingleComponent(); } private: void initBatchTracker(const GrXPOverridesForBatch& overrides) override { // Handle any overrides that affect our GP. if (!overrides.readsCoverage()) { fGeoData[0].fColor = GrColor_ILLEGAL; } if (!overrides.readsLocalCoords()) { fViewMatrixIfUsingLocalCoords.reset(); } } void onPrepareDraws(Target* target) const override { SkMatrix localMatrix; if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) { return; } // Setup geometry processor SkAutoTUnref gp(new EllipseGeometryProcessor(fStroked, localMatrix)); target->initDraw(gp); int instanceCount = fGeoData.count(); QuadHelper helper; size_t vertexStride = gp->getVertexStride(); SkASSERT(vertexStride == sizeof(EllipseVertex)); EllipseVertex* verts = reinterpret_cast( helper.init(target, vertexStride, instanceCount)); if (!verts) { return; } for (int i = 0; i < instanceCount; i++) { const Geometry& geom = fGeoData[i]; GrColor color = geom.fColor; SkScalar xRadius = geom.fXRadius; SkScalar yRadius = geom.fYRadius; // Compute the reciprocals of the radii here to save time in the shader SkScalar xRadRecip = SkScalarInvert(xRadius); SkScalar yRadRecip = SkScalarInvert(yRadius); SkScalar xInnerRadRecip = SkScalarInvert(geom.fInnerXRadius); SkScalar yInnerRadRecip = SkScalarInvert(geom.fInnerYRadius); const SkRect& bounds = geom.fDevBounds; // The inner radius in the vertex data must be specified in normalized space. verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); verts[0].fColor = color; verts[0].fOffset = SkPoint::Make(-xRadius, -yRadius); verts[0].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); verts[0].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); verts[1].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); verts[1].fColor = color; verts[1].fOffset = SkPoint::Make(-xRadius, yRadius); verts[1].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); verts[1].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); verts[2].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); verts[2].fColor = color; verts[2].fOffset = SkPoint::Make(xRadius, yRadius); verts[2].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); verts[2].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); verts[3].fColor = color; verts[3].fOffset = SkPoint::Make(xRadius, -yRadius); verts[3].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); verts[3].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); verts += kVerticesPerQuad; } helper.recordDraw(target); } bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { EllipseBatch* that = t->cast(); if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), that->bounds(), caps)) { return false; } if (fStroked != that->fStroked) { return false; } if (!fViewMatrixIfUsingLocalCoords.cheapEqualTo(that->fViewMatrixIfUsingLocalCoords)) { return false; } fGeoData.push_back_n(that->fGeoData.count(), that->fGeoData.begin()); this->joinBounds(that->bounds()); return true; } bool fStroked; SkMatrix fViewMatrixIfUsingLocalCoords; SkSTArray<1, Geometry, true> fGeoData; typedef GrVertexBatch INHERITED; }; static GrDrawBatch* create_ellipse_batch(GrColor color, const SkMatrix& viewMatrix, const SkRect& ellipse, const SkStrokeRec& stroke) { SkASSERT(viewMatrix.rectStaysRect()); // do any matrix crunching before we reset the draw state for device coords SkPoint center = SkPoint::Make(ellipse.centerX(), ellipse.centerY()); viewMatrix.mapPoints(¢er, 1); SkScalar ellipseXRadius = SkScalarHalf(ellipse.width()); SkScalar ellipseYRadius = SkScalarHalf(ellipse.height()); SkScalar xRadius = SkScalarAbs(viewMatrix[SkMatrix::kMScaleX]*ellipseXRadius + viewMatrix[SkMatrix::kMSkewY]*ellipseYRadius); SkScalar yRadius = SkScalarAbs(viewMatrix[SkMatrix::kMSkewX]*ellipseXRadius + viewMatrix[SkMatrix::kMScaleY]*ellipseYRadius); // do (potentially) anisotropic mapping of stroke SkVector scaledStroke; SkScalar strokeWidth = stroke.getWidth(); scaledStroke.fX = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMScaleX] + viewMatrix[SkMatrix::kMSkewY])); scaledStroke.fY = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMSkewX] + viewMatrix[SkMatrix::kMScaleY])); SkStrokeRec::Style style = stroke.getStyle(); bool isStrokeOnly = SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style; bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; SkScalar innerXRadius = 0; SkScalar innerYRadius = 0; if (hasStroke) { if (SkScalarNearlyZero(scaledStroke.length())) { scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf); } else { scaledStroke.scale(SK_ScalarHalf); } // we only handle thick strokes for near-circular ellipses if (scaledStroke.length() > SK_ScalarHalf && (SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) { return nullptr; } // we don't handle it if curvature of the stroke is less than curvature of the ellipse if (scaledStroke.fX*(yRadius*yRadius) < (scaledStroke.fY*scaledStroke.fY)*xRadius || scaledStroke.fY*(xRadius*xRadius) < (scaledStroke.fX*scaledStroke.fX)*yRadius) { return nullptr; } // this is legit only if scale & translation (which should be the case at the moment) if (isStrokeOnly) { innerXRadius = xRadius - scaledStroke.fX; innerYRadius = yRadius - scaledStroke.fY; } xRadius += scaledStroke.fX; yRadius += scaledStroke.fY; } // We've extended the outer x radius out half a pixel to antialias. // This will also expand the rect so all the pixels will be captured. // TODO: Consider if we should use sqrt(2)/2 instead xRadius += SK_ScalarHalf; yRadius += SK_ScalarHalf; EllipseBatch::Geometry geometry; geometry.fColor = color; geometry.fXRadius = xRadius; geometry.fYRadius = yRadius; geometry.fInnerXRadius = innerXRadius; geometry.fInnerYRadius = innerYRadius; geometry.fDevBounds = SkRect::MakeLTRB(center.fX - xRadius, center.fY - yRadius, center.fX + xRadius, center.fY + yRadius); return new EllipseBatch(geometry, viewMatrix, isStrokeOnly && innerXRadius > 0 && innerYRadius > 0); } GrDrawBatch* GrOvalRenderer::CreateEllipseBatch(GrColor color, const SkMatrix& viewMatrix, const SkRect& ellipse, const SkStrokeRec& stroke) { return create_ellipse_batch(color, viewMatrix, ellipse, stroke); } ///////////////////////////////////////////////////////////////////////////////////////////////// class DIEllipseBatch : public GrVertexBatch { public: DEFINE_BATCH_CLASS_ID struct Geometry { SkMatrix fViewMatrix; SkRect fBounds; SkScalar fXRadius; SkScalar fYRadius; SkScalar fInnerXRadius; SkScalar fInnerYRadius; SkScalar fGeoDx; SkScalar fGeoDy; GrColor fColor; DIEllipseStyle fStyle; }; static GrDrawBatch* Create(const Geometry& geometry, const SkRect& bounds) { return new DIEllipseBatch(geometry, bounds); } const char* name() const override { return "DIEllipseBatch"; } void computePipelineOptimizations(GrInitInvariantOutput* color, GrInitInvariantOutput* coverage, GrBatchToXPOverrides* overrides) const override { // When this is called on a batch, there is only one geometry bundle color->setKnownFourComponents(fGeoData[0].fColor); coverage->setUnknownSingleComponent(); } private: void initBatchTracker(const GrXPOverridesForBatch& overrides) override { // Handle any overrides that affect our GP. overrides.getOverrideColorIfSet(&fGeoData[0].fColor); fUsesLocalCoords = overrides.readsLocalCoords(); } void onPrepareDraws(Target* target) const override { // Setup geometry processor SkAutoTUnref gp(new DIEllipseGeometryProcessor(this->viewMatrix(), this->style())); target->initDraw(gp); int instanceCount = fGeoData.count(); size_t vertexStride = gp->getVertexStride(); SkASSERT(vertexStride == sizeof(DIEllipseVertex)); QuadHelper helper; DIEllipseVertex* verts = reinterpret_cast( helper.init(target, vertexStride, instanceCount)); if (!verts) { return; } for (int i = 0; i < instanceCount; i++) { const Geometry& geom = fGeoData[i]; GrColor color = geom.fColor; SkScalar xRadius = geom.fXRadius; SkScalar yRadius = geom.fYRadius; const SkRect& bounds = geom.fBounds; // This adjusts the "radius" to include the half-pixel border SkScalar offsetDx = geom.fGeoDx / xRadius; SkScalar offsetDy = geom.fGeoDy / yRadius; SkScalar innerRatioX = xRadius / geom.fInnerXRadius; SkScalar innerRatioY = yRadius / geom.fInnerYRadius; verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); verts[0].fColor = color; verts[0].fOuterOffset = SkPoint::Make(-1.0f - offsetDx, -1.0f - offsetDy); verts[0].fInnerOffset = SkPoint::Make(-innerRatioX - offsetDx, -innerRatioY - offsetDy); verts[1].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); verts[1].fColor = color; verts[1].fOuterOffset = SkPoint::Make(-1.0f - offsetDx, 1.0f + offsetDy); verts[1].fInnerOffset = SkPoint::Make(-innerRatioX - offsetDx, innerRatioY + offsetDy); verts[2].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); verts[2].fColor = color; verts[2].fOuterOffset = SkPoint::Make(1.0f + offsetDx, 1.0f + offsetDy); verts[2].fInnerOffset = SkPoint::Make(innerRatioX + offsetDx, innerRatioY + offsetDy); verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); verts[3].fColor = color; verts[3].fOuterOffset = SkPoint::Make(1.0f + offsetDx, -1.0f - offsetDy); verts[3].fInnerOffset = SkPoint::Make(innerRatioX + offsetDx, -innerRatioY - offsetDy); verts += kVerticesPerQuad; } helper.recordDraw(target); } DIEllipseBatch(const Geometry& geometry, const SkRect& bounds) : INHERITED(ClassID()) { fGeoData.push_back(geometry); this->setBounds(bounds); } bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { DIEllipseBatch* that = t->cast(); if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), that->bounds(), caps)) { return false; } if (this->style() != that->style()) { return false; } // TODO rewrite to allow positioning on CPU if (!this->viewMatrix().cheapEqualTo(that->viewMatrix())) { return false; } fGeoData.push_back_n(that->fGeoData.count(), that->fGeoData.begin()); this->joinBounds(that->bounds()); return true; } const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; } DIEllipseStyle style() const { return fGeoData[0].fStyle; } bool fUsesLocalCoords; SkSTArray<1, Geometry, true> fGeoData; typedef GrVertexBatch INHERITED; }; static GrDrawBatch* create_diellipse_batch(GrColor color, const SkMatrix& viewMatrix, const SkRect& ellipse, const SkStrokeRec& stroke) { SkPoint center = SkPoint::Make(ellipse.centerX(), ellipse.centerY()); SkScalar xRadius = SkScalarHalf(ellipse.width()); SkScalar yRadius = SkScalarHalf(ellipse.height()); SkStrokeRec::Style style = stroke.getStyle(); DIEllipseStyle dieStyle = (SkStrokeRec::kStroke_Style == style) ? DIEllipseStyle::kStroke : (SkStrokeRec::kHairline_Style == style) ? DIEllipseStyle::kHairline : DIEllipseStyle::kFill; SkScalar innerXRadius = 0; SkScalar innerYRadius = 0; if (SkStrokeRec::kFill_Style != style && SkStrokeRec::kHairline_Style != style) { SkScalar strokeWidth = stroke.getWidth(); if (SkScalarNearlyZero(strokeWidth)) { strokeWidth = SK_ScalarHalf; } else { strokeWidth *= SK_ScalarHalf; } // we only handle thick strokes for near-circular ellipses if (strokeWidth > SK_ScalarHalf && (SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) { return nullptr; } // we don't handle it if curvature of the stroke is less than curvature of the ellipse if (strokeWidth*(yRadius*yRadius) < (strokeWidth*strokeWidth)*xRadius || strokeWidth*(xRadius*xRadius) < (strokeWidth*strokeWidth)*yRadius) { return nullptr; } // set inner radius (if needed) if (SkStrokeRec::kStroke_Style == style) { innerXRadius = xRadius - strokeWidth; innerYRadius = yRadius - strokeWidth; } xRadius += strokeWidth; yRadius += strokeWidth; } if (DIEllipseStyle::kStroke == dieStyle) { dieStyle = (innerXRadius > 0 && innerYRadius > 0) ? DIEllipseStyle ::kStroke : DIEllipseStyle ::kFill; } // This expands the outer rect so that after CTM we end up with a half-pixel border SkScalar a = viewMatrix[SkMatrix::kMScaleX]; SkScalar b = viewMatrix[SkMatrix::kMSkewX]; SkScalar c = viewMatrix[SkMatrix::kMSkewY]; SkScalar d = viewMatrix[SkMatrix::kMScaleY]; SkScalar geoDx = SK_ScalarHalf / SkScalarSqrt(a*a + c*c); SkScalar geoDy = SK_ScalarHalf / SkScalarSqrt(b*b + d*d); DIEllipseBatch::Geometry geometry; geometry.fViewMatrix = viewMatrix; geometry.fColor = color; geometry.fXRadius = xRadius; geometry.fYRadius = yRadius; geometry.fInnerXRadius = innerXRadius; geometry.fInnerYRadius = innerYRadius; geometry.fGeoDx = geoDx; geometry.fGeoDy = geoDy; geometry.fStyle = dieStyle; geometry.fBounds = SkRect::MakeLTRB(center.fX - xRadius - geoDx, center.fY - yRadius - geoDy, center.fX + xRadius + geoDx, center.fY + yRadius + geoDy); SkRect devBounds = geometry.fBounds; viewMatrix.mapRect(&devBounds); return DIEllipseBatch::Create(geometry, devBounds); } GrDrawBatch* GrOvalRenderer::CreateDIEllipseBatch(GrColor color, const SkMatrix& viewMatrix, const SkRect& ellipse, const SkStrokeRec& stroke) { return create_diellipse_batch(color, viewMatrix, ellipse, stroke); } /////////////////////////////////////////////////////////////////////////////// static const uint16_t gRRectIndices[] = { // corners 0, 1, 5, 0, 5, 4, 2, 3, 7, 2, 7, 6, 8, 9, 13, 8, 13, 12, 10, 11, 15, 10, 15, 14, // edges 1, 2, 6, 1, 6, 5, 4, 5, 9, 4, 9, 8, 6, 7, 11, 6, 11, 10, 9, 10, 14, 9, 14, 13, // center // we place this at the end so that we can ignore these indices when rendering stroke-only 5, 6, 10, 5, 10, 9 }; static const int kIndicesPerStrokeRRect = SK_ARRAY_COUNT(gRRectIndices) - 6; static const int kIndicesPerRRect = SK_ARRAY_COUNT(gRRectIndices); static const int kVertsPerRRect = 16; static const int kNumRRectsInIndexBuffer = 256; GR_DECLARE_STATIC_UNIQUE_KEY(gStrokeRRectOnlyIndexBufferKey); GR_DECLARE_STATIC_UNIQUE_KEY(gRRectOnlyIndexBufferKey); static const GrBuffer* ref_rrect_index_buffer(bool strokeOnly, GrResourceProvider* resourceProvider) { GR_DEFINE_STATIC_UNIQUE_KEY(gStrokeRRectOnlyIndexBufferKey); GR_DEFINE_STATIC_UNIQUE_KEY(gRRectOnlyIndexBufferKey); if (strokeOnly) { return resourceProvider->findOrCreateInstancedIndexBuffer( gRRectIndices, kIndicesPerStrokeRRect, kNumRRectsInIndexBuffer, kVertsPerRRect, gStrokeRRectOnlyIndexBufferKey); } else { return resourceProvider->findOrCreateInstancedIndexBuffer( gRRectIndices, kIndicesPerRRect, kNumRRectsInIndexBuffer, kVertsPerRRect, gRRectOnlyIndexBufferKey); } } /////////////////////////////////////////////////////////////////////////////////////////////////// class RRectCircleRendererBatch : public GrVertexBatch { public: DEFINE_BATCH_CLASS_ID struct Geometry { SkRect fDevBounds; SkScalar fInnerRadius; SkScalar fOuterRadius; GrColor fColor; }; RRectCircleRendererBatch(const Geometry& geometry, const SkMatrix& viewMatrix, bool stroked) : INHERITED(ClassID()) , fStroked(stroked) , fViewMatrixIfUsingLocalCoords(viewMatrix) { fGeoData.push_back(geometry); this->setBounds(geometry.fDevBounds); } const char* name() const override { return "RRectCircleBatch"; } void computePipelineOptimizations(GrInitInvariantOutput* color, GrInitInvariantOutput* coverage, GrBatchToXPOverrides* overrides) const override { // When this is called on a batch, there is only one geometry bundle color->setKnownFourComponents(fGeoData[0].fColor); coverage->setUnknownSingleComponent(); } private: void initBatchTracker(const GrXPOverridesForBatch& overrides) override { // Handle any overrides that affect our GP. overrides.getOverrideColorIfSet(&fGeoData[0].fColor); if (!overrides.readsLocalCoords()) { fViewMatrixIfUsingLocalCoords.reset(); } } void onPrepareDraws(Target* target) const override { // Invert the view matrix as a local matrix (if any other processors require coords). SkMatrix localMatrix; if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) { return; } // Setup geometry processor SkAutoTUnref gp(new CircleGeometryProcessor(fStroked, localMatrix)); target->initDraw(gp); int instanceCount = fGeoData.count(); size_t vertexStride = gp->getVertexStride(); SkASSERT(vertexStride == sizeof(CircleVertex)); // drop out the middle quad if we're stroked int indicesPerInstance = fStroked ? kIndicesPerStrokeRRect : kIndicesPerRRect; SkAutoTUnref indexBuffer( ref_rrect_index_buffer(fStroked, target->resourceProvider())); InstancedHelper helper; CircleVertex* verts = reinterpret_cast(helper.init(target, kTriangles_GrPrimitiveType, vertexStride, indexBuffer, kVertsPerRRect, indicesPerInstance, instanceCount)); if (!verts || !indexBuffer) { SkDebugf("Could not allocate vertices\n"); return; } for (int i = 0; i < instanceCount; i++) { const Geometry& args = fGeoData[i]; GrColor color = args.fColor; SkScalar outerRadius = args.fOuterRadius; const SkRect& bounds = args.fDevBounds; SkScalar yCoords[4] = { bounds.fTop, bounds.fTop + outerRadius, bounds.fBottom - outerRadius, bounds.fBottom }; SkScalar yOuterRadii[4] = {-1, 0, 0, 1 }; // The inner radius in the vertex data must be specified in normalized space. SkScalar innerRadius = args.fInnerRadius / args.fOuterRadius; for (int i = 0; i < 4; ++i) { verts->fPos = SkPoint::Make(bounds.fLeft, yCoords[i]); verts->fColor = color; verts->fOffset = SkPoint::Make(-1, yOuterRadii[i]); verts->fOuterRadius = outerRadius; verts->fInnerRadius = innerRadius; verts++; verts->fPos = SkPoint::Make(bounds.fLeft + outerRadius, yCoords[i]); verts->fColor = color; verts->fOffset = SkPoint::Make(0, yOuterRadii[i]); verts->fOuterRadius = outerRadius; verts->fInnerRadius = innerRadius; verts++; verts->fPos = SkPoint::Make(bounds.fRight - outerRadius, yCoords[i]); verts->fColor = color; verts->fOffset = SkPoint::Make(0, yOuterRadii[i]); verts->fOuterRadius = outerRadius; verts->fInnerRadius = innerRadius; verts++; verts->fPos = SkPoint::Make(bounds.fRight, yCoords[i]); verts->fColor = color; verts->fOffset = SkPoint::Make(1, yOuterRadii[i]); verts->fOuterRadius = outerRadius; verts->fInnerRadius = innerRadius; verts++; } } helper.recordDraw(target); } bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { RRectCircleRendererBatch* that = t->cast(); if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), that->bounds(), caps)) { return false; } if (fStroked != that->fStroked) { return false; } if (!fViewMatrixIfUsingLocalCoords.cheapEqualTo(that->fViewMatrixIfUsingLocalCoords)) { return false; } fGeoData.push_back_n(that->fGeoData.count(), that->fGeoData.begin()); this->joinBounds(that->bounds()); return true; } bool fStroked; SkMatrix fViewMatrixIfUsingLocalCoords; SkSTArray<1, Geometry, true> fGeoData; typedef GrVertexBatch INHERITED; }; class RRectEllipseRendererBatch : public GrVertexBatch { public: DEFINE_BATCH_CLASS_ID struct Geometry { SkRect fDevBounds; SkScalar fXRadius; SkScalar fYRadius; SkScalar fInnerXRadius; SkScalar fInnerYRadius; GrColor fColor; }; RRectEllipseRendererBatch(const Geometry& geometry, const SkMatrix& viewMatrix, bool stroked) : INHERITED(ClassID()) , fStroked(stroked) , fViewMatrixIfUsingLocalCoords(viewMatrix) { fGeoData.push_back(geometry); this->setBounds(geometry.fDevBounds); } const char* name() const override { return "RRectEllipseRendererBatch"; } void computePipelineOptimizations(GrInitInvariantOutput* color, GrInitInvariantOutput* coverage, GrBatchToXPOverrides* overrides) const override { // When this is called on a batch, there is only one geometry bundle color->setKnownFourComponents(fGeoData[0].fColor); coverage->setUnknownSingleComponent(); } private: void initBatchTracker(const GrXPOverridesForBatch& overrides) override { // Handle overrides that affect our GP. overrides.getOverrideColorIfSet(&fGeoData[0].fColor); if (!overrides.readsLocalCoords()) { fViewMatrixIfUsingLocalCoords.reset(); } } void onPrepareDraws(Target* target) const override { SkMatrix localMatrix; if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) { return; } // Setup geometry processor SkAutoTUnref gp(new EllipseGeometryProcessor(fStroked, localMatrix)); target->initDraw(gp); int instanceCount = fGeoData.count(); size_t vertexStride = gp->getVertexStride(); SkASSERT(vertexStride == sizeof(EllipseVertex)); // drop out the middle quad if we're stroked int indicesPerInstance = fStroked ? kIndicesPerStrokeRRect : kIndicesPerRRect; SkAutoTUnref indexBuffer( ref_rrect_index_buffer(fStroked, target->resourceProvider())); InstancedHelper helper; EllipseVertex* verts = reinterpret_cast( helper.init(target, kTriangles_GrPrimitiveType, vertexStride, indexBuffer, kVertsPerRRect, indicesPerInstance, instanceCount)); if (!verts || !indexBuffer) { SkDebugf("Could not allocate vertices\n"); return; } for (int i = 0; i < instanceCount; i++) { const Geometry& args = fGeoData[i]; GrColor color = args.fColor; // Compute the reciprocals of the radii here to save time in the shader SkScalar xRadRecip = SkScalarInvert(args.fXRadius); SkScalar yRadRecip = SkScalarInvert(args.fYRadius); SkScalar xInnerRadRecip = SkScalarInvert(args.fInnerXRadius); SkScalar yInnerRadRecip = SkScalarInvert(args.fInnerYRadius); // Extend the radii out half a pixel to antialias. SkScalar xOuterRadius = args.fXRadius + SK_ScalarHalf; SkScalar yOuterRadius = args.fYRadius + SK_ScalarHalf; const SkRect& bounds = args.fDevBounds; SkScalar yCoords[4] = { bounds.fTop, bounds.fTop + yOuterRadius, bounds.fBottom - yOuterRadius, bounds.fBottom }; SkScalar yOuterOffsets[4] = { yOuterRadius, SK_ScalarNearlyZero, // we're using inversesqrt() in shader, so can't be exactly 0 SK_ScalarNearlyZero, yOuterRadius }; for (int i = 0; i < 4; ++i) { verts->fPos = SkPoint::Make(bounds.fLeft, yCoords[i]); verts->fColor = color; verts->fOffset = SkPoint::Make(xOuterRadius, yOuterOffsets[i]); verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); verts++; verts->fPos = SkPoint::Make(bounds.fLeft + xOuterRadius, yCoords[i]); verts->fColor = color; verts->fOffset = SkPoint::Make(SK_ScalarNearlyZero, yOuterOffsets[i]); verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); verts++; verts->fPos = SkPoint::Make(bounds.fRight - xOuterRadius, yCoords[i]); verts->fColor = color; verts->fOffset = SkPoint::Make(SK_ScalarNearlyZero, yOuterOffsets[i]); verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); verts++; verts->fPos = SkPoint::Make(bounds.fRight, yCoords[i]); verts->fColor = color; verts->fOffset = SkPoint::Make(xOuterRadius, yOuterOffsets[i]); verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); verts++; } } helper.recordDraw(target); } bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { RRectEllipseRendererBatch* that = t->cast(); if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), that->bounds(), caps)) { return false; } if (fStroked != that->fStroked) { return false; } if (!fViewMatrixIfUsingLocalCoords.cheapEqualTo(that->fViewMatrixIfUsingLocalCoords)) { return false; } fGeoData.push_back_n(that->fGeoData.count(), that->fGeoData.begin()); this->joinBounds(that->bounds()); return true; } bool fStroked; SkMatrix fViewMatrixIfUsingLocalCoords; SkSTArray<1, Geometry, true> fGeoData; typedef GrVertexBatch INHERITED; }; static GrDrawBatch* create_rrect_batch(GrColor color, const SkMatrix& viewMatrix, const SkRRect& rrect, const SkStrokeRec& stroke) { SkASSERT(viewMatrix.rectStaysRect()); SkASSERT(rrect.isSimple()); SkASSERT(!rrect.isOval()); // RRect batchs only handle simple, but not too simple, rrects // do any matrix crunching before we reset the draw state for device coords const SkRect& rrectBounds = rrect.getBounds(); SkRect bounds; viewMatrix.mapRect(&bounds, rrectBounds); SkVector radii = rrect.getSimpleRadii(); SkScalar xRadius = SkScalarAbs(viewMatrix[SkMatrix::kMScaleX]*radii.fX + viewMatrix[SkMatrix::kMSkewY]*radii.fY); SkScalar yRadius = SkScalarAbs(viewMatrix[SkMatrix::kMSkewX]*radii.fX + viewMatrix[SkMatrix::kMScaleY]*radii.fY); SkStrokeRec::Style style = stroke.getStyle(); // do (potentially) anisotropic mapping of stroke SkVector scaledStroke; SkScalar strokeWidth = stroke.getWidth(); bool isStrokeOnly = SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style; bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; if (hasStroke) { if (SkStrokeRec::kHairline_Style == style) { scaledStroke.set(1, 1); } else { scaledStroke.fX = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMScaleX] + viewMatrix[SkMatrix::kMSkewY])); scaledStroke.fY = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMSkewX] + viewMatrix[SkMatrix::kMScaleY])); } // if half of strokewidth is greater than radius, we don't handle that right now if (SK_ScalarHalf*scaledStroke.fX > xRadius || SK_ScalarHalf*scaledStroke.fY > yRadius) { return nullptr; } } // The way the effect interpolates the offset-to-ellipse/circle-center attribute only works on // the interior of the rrect if the radii are >= 0.5. Otherwise, the inner rect of the nine- // patch will have fractional coverage. This only matters when the interior is actually filled. // We could consider falling back to rect rendering here, since a tiny radius is // indistinguishable from a square corner. if (!isStrokeOnly && (SK_ScalarHalf > xRadius || SK_ScalarHalf > yRadius)) { return nullptr; } // if the corners are circles, use the circle renderer if ((!hasStroke || scaledStroke.fX == scaledStroke.fY) && xRadius == yRadius) { SkScalar innerRadius = 0.0f; SkScalar outerRadius = xRadius; SkScalar halfWidth = 0; if (hasStroke) { if (SkScalarNearlyZero(scaledStroke.fX)) { halfWidth = SK_ScalarHalf; } else { halfWidth = SkScalarHalf(scaledStroke.fX); } if (isStrokeOnly) { innerRadius = xRadius - halfWidth; } outerRadius += halfWidth; bounds.outset(halfWidth, halfWidth); } isStrokeOnly = (isStrokeOnly && innerRadius >= 0); // The radii are outset for two reasons. First, it allows the shader to simply perform // simpler computation because the computed alpha is zero, rather than 50%, at the radius. // Second, the outer radius is used to compute the verts of the bounding box that is // rendered and the outset ensures the box will cover all partially covered by the rrect // corners. outerRadius += SK_ScalarHalf; innerRadius -= SK_ScalarHalf; // Expand the rect so all the pixels will be captured. bounds.outset(SK_ScalarHalf, SK_ScalarHalf); RRectCircleRendererBatch::Geometry geometry; geometry.fColor = color; geometry.fInnerRadius = innerRadius; geometry.fOuterRadius = outerRadius; geometry.fDevBounds = bounds; return new RRectCircleRendererBatch(geometry, viewMatrix, isStrokeOnly); // otherwise we use the ellipse renderer } else { SkScalar innerXRadius = 0.0f; SkScalar innerYRadius = 0.0f; if (hasStroke) { if (SkScalarNearlyZero(scaledStroke.length())) { scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf); } else { scaledStroke.scale(SK_ScalarHalf); } // we only handle thick strokes for near-circular ellipses if (scaledStroke.length() > SK_ScalarHalf && (SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) { return nullptr; } // we don't handle it if curvature of the stroke is less than curvature of the ellipse if (scaledStroke.fX*(yRadius*yRadius) < (scaledStroke.fY*scaledStroke.fY)*xRadius || scaledStroke.fY*(xRadius*xRadius) < (scaledStroke.fX*scaledStroke.fX)*yRadius) { return nullptr; } // this is legit only if scale & translation (which should be the case at the moment) if (isStrokeOnly) { innerXRadius = xRadius - scaledStroke.fX; innerYRadius = yRadius - scaledStroke.fY; } xRadius += scaledStroke.fX; yRadius += scaledStroke.fY; bounds.outset(scaledStroke.fX, scaledStroke.fY); } isStrokeOnly = (isStrokeOnly && innerXRadius >= 0 && innerYRadius >= 0); // Expand the rect so all the pixels will be captured. bounds.outset(SK_ScalarHalf, SK_ScalarHalf); RRectEllipseRendererBatch::Geometry geometry; geometry.fColor = color; geometry.fXRadius = xRadius; geometry.fYRadius = yRadius; geometry.fInnerXRadius = innerXRadius; geometry.fInnerYRadius = innerYRadius; geometry.fDevBounds = bounds; return new RRectEllipseRendererBatch(geometry, viewMatrix, isStrokeOnly); } } GrDrawBatch* GrOvalRenderer::CreateRRectBatch(GrColor color, const SkMatrix& viewMatrix, const SkRRect& rrect, const SkStrokeRec& stroke, GrShaderCaps* shaderCaps) { if (rrect.isOval()) { return CreateOvalBatch(color, viewMatrix, rrect.getBounds(), stroke, shaderCaps); } if (!viewMatrix.rectStaysRect() || !rrect.isSimple()) { return nullptr; } return create_rrect_batch(color, viewMatrix, rrect, stroke); } /////////////////////////////////////////////////////////////////////////////////////////////////// #ifdef GR_TEST_UTILS DRAW_BATCH_TEST_DEFINE(CircleBatch) { SkMatrix viewMatrix = GrTest::TestMatrix(random); GrColor color = GrRandomColor(random); SkRect circle = GrTest::TestSquare(random); return create_circle_batch(color, viewMatrix, circle, GrTest::TestStrokeRec(random)); } DRAW_BATCH_TEST_DEFINE(EllipseBatch) { SkMatrix viewMatrix = GrTest::TestMatrixRectStaysRect(random); GrColor color = GrRandomColor(random); SkRect ellipse = GrTest::TestSquare(random); return create_ellipse_batch(color, viewMatrix, ellipse, GrTest::TestStrokeRec(random)); } DRAW_BATCH_TEST_DEFINE(DIEllipseBatch) { SkMatrix viewMatrix = GrTest::TestMatrix(random); GrColor color = GrRandomColor(random); SkRect ellipse = GrTest::TestSquare(random); return create_diellipse_batch(color, viewMatrix, ellipse, GrTest::TestStrokeRec(random)); } DRAW_BATCH_TEST_DEFINE(RRectBatch) { SkMatrix viewMatrix = GrTest::TestMatrixRectStaysRect(random); GrColor color = GrRandomColor(random); const SkRRect& rrect = GrTest::TestRRectSimple(random); return create_rrect_batch(color, viewMatrix, rrect, GrTest::TestStrokeRec(random)); } #endif