/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrOvalRenderer.h" #include "GrEffect.h" #include "gl/GrGLEffect.h" #include "gl/GrGLSL.h" #include "GrTBackendEffectFactory.h" #include "GrDrawState.h" #include "GrDrawTarget.h" #include "SkStrokeRec.h" SK_DEFINE_INST_COUNT(GrOvalRenderer) namespace { struct CircleVertex { GrPoint fPos; GrPoint fOffset; SkScalar fOuterRadius; SkScalar fInnerRadius; }; struct EllipseVertex { GrPoint fPos; SkScalar fOuterXRadius; SkScalar fInnerXRadius; GrPoint fOuterOffset; GrPoint fInnerOffset; }; inline bool circle_stays_circle(const SkMatrix& m) { return m.isSimilarity(); } } /////////////////////////////////////////////////////////////////////////////// /** * The output of this effect is a modulation of the input color and coverage for a circle, * specified as offset_x, offset_y (both from center point), outer radius and inner radius. */ class CircleEdgeEffect : public GrEffect { public: static GrEffectRef* Create(bool stroke) { // we go through this so we only have one copy of each effect (stroked/filled) static SkAutoTUnref gCircleStrokeEdgeEffectRef( CreateEffectRef(AutoEffectUnref(SkNEW_ARGS(CircleEdgeEffect, (true))))); static SkAutoTUnref gCircleFillEdgeEffectRef( CreateEffectRef(AutoEffectUnref(SkNEW_ARGS(CircleEdgeEffect, (false))))); if (stroke) { gCircleStrokeEdgeEffectRef.get()->ref(); return gCircleStrokeEdgeEffectRef; } else { gCircleFillEdgeEffectRef.get()->ref(); return gCircleFillEdgeEffectRef; } } virtual void getConstantColorComponents(GrColor* color, uint32_t* validFlags) const SK_OVERRIDE { *validFlags = 0; } virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE { return GrTBackendEffectFactory::getInstance(); } virtual ~CircleEdgeEffect() {} static const char* Name() { return "CircleEdge"; } inline bool isStroked() const { return fStroke; } class GLEffect : public GrGLEffect { public: GLEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&) : INHERITED (factory) {} virtual void emitCode(GrGLShaderBuilder* builder, const GrDrawEffect& drawEffect, EffectKey key, const char* outputColor, const char* inputColor, const TextureSamplerArray& samplers) SK_OVERRIDE { const CircleEdgeEffect& circleEffect = drawEffect.castEffect(); const char *vsName, *fsName; builder->addVarying(kVec4f_GrSLType, "CircleEdge", &vsName, &fsName); const SkString* attrName = builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[0]); builder->vsCodeAppendf("\t%s = %s;\n", vsName, attrName->c_str()); builder->fsCodeAppendf("\tfloat d = length(%s.xy);\n", fsName); builder->fsCodeAppendf("\tfloat edgeAlpha = clamp(%s.z - d, 0.0, 1.0);\n", fsName); if (circleEffect.isStroked()) { builder->fsCodeAppendf("\tfloat innerAlpha = clamp(d - %s.w, 0.0, 1.0);\n", fsName); builder->fsCodeAppend("\tedgeAlpha *= innerAlpha;\n"); } SkString modulate; GrGLSLModulate4f(&modulate, inputColor, "edgeAlpha"); builder->fsCodeAppendf("\t%s = %s;\n", outputColor, modulate.c_str()); } static inline EffectKey GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) { const CircleEdgeEffect& circleEffect = drawEffect.castEffect(); return circleEffect.isStroked() ? 0x1 : 0x0; } virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE {} private: typedef GrGLEffect INHERITED; }; private: CircleEdgeEffect(bool stroke) : GrEffect() { this->addVertexAttrib(kVec4f_GrSLType); fStroke = stroke; } virtual bool onIsEqual(const GrEffect& other) const SK_OVERRIDE { const CircleEdgeEffect& cee = CastEffect(other); return cee.fStroke == fStroke; } bool fStroke; GR_DECLARE_EFFECT_TEST; typedef GrEffect INHERITED; }; GR_DEFINE_EFFECT_TEST(CircleEdgeEffect); GrEffectRef* CircleEdgeEffect::TestCreate(SkMWCRandom* random, GrContext* context, const GrDrawTargetCaps&, GrTexture* textures[]) { return CircleEdgeEffect::Create(random->nextBool()); } /////////////////////////////////////////////////////////////////////////////// /** * The output of this effect is a modulation of the input color and coverage for an axis-aligned * ellipse, specified as outer and inner radii, and outer and inner offsets from center. */ class EllipseEdgeEffect : public GrEffect { public: static GrEffectRef* Create(bool stroke) { // we go through this so we only have one copy of each effect (stroked/filled) static SkAutoTUnref gEllipseStrokeEdgeEffectRef( CreateEffectRef(AutoEffectUnref(SkNEW_ARGS(EllipseEdgeEffect, (true))))); static SkAutoTUnref gEllipseFillEdgeEffectRef( CreateEffectRef(AutoEffectUnref(SkNEW_ARGS(EllipseEdgeEffect, (false))))); if (stroke) { gEllipseStrokeEdgeEffectRef.get()->ref(); return gEllipseStrokeEdgeEffectRef; } else { gEllipseFillEdgeEffectRef.get()->ref(); return gEllipseFillEdgeEffectRef; } } virtual void getConstantColorComponents(GrColor* color, uint32_t* validFlags) const SK_OVERRIDE { *validFlags = 0; } virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE { return GrTBackendEffectFactory::getInstance(); } virtual ~EllipseEdgeEffect() {} static const char* Name() { return "EllipseEdge"; } inline bool isStroked() const { return fStroke; } class GLEffect : public GrGLEffect { public: GLEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&) : INHERITED (factory) {} virtual void emitCode(GrGLShaderBuilder* builder, const GrDrawEffect& drawEffect, EffectKey key, const char* outputColor, const char* inputColor, const TextureSamplerArray& samplers) SK_OVERRIDE { const EllipseEdgeEffect& ellipseEffect = drawEffect.castEffect(); const char *vsRadiiName, *fsRadiiName; const char *vsOffsetsName, *fsOffsetsName; builder->addVarying(kVec2f_GrSLType, "EllipseRadii", &vsRadiiName, &fsRadiiName); const SkString* attr0Name = builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[0]); builder->vsCodeAppendf("\t%s = %s;\n", vsRadiiName, attr0Name->c_str()); builder->addVarying(kVec4f_GrSLType, "EllipseOffsets", &vsOffsetsName, &fsOffsetsName); const SkString* attr1Name = builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[1]); builder->vsCodeAppendf("\t%s = %s;\n", vsOffsetsName, attr1Name->c_str()); // get length of offset builder->fsCodeAppendf("\tfloat dOuter = length(%s.xy);\n", fsOffsetsName); // compare outer lengths against xOuterRadius builder->fsCodeAppendf("\tfloat edgeAlpha = clamp(%s.x-dOuter, 0.0, 1.0);\n", fsRadiiName); if (ellipseEffect.isStroked()) { builder->fsCodeAppendf("\tfloat dInner = length(%s.zw);\n", fsOffsetsName); // compare inner lengths against xInnerRadius builder->fsCodeAppendf("\tfloat innerAlpha = clamp(dInner-%s.y, 0.0, 1.0);\n", fsRadiiName); builder->fsCodeAppend("\tedgeAlpha *= innerAlpha;\n"); } SkString modulate; GrGLSLModulate4f(&modulate, inputColor, "edgeAlpha"); builder->fsCodeAppendf("\t%s = %s;\n", outputColor, modulate.c_str()); } static inline EffectKey GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) { const EllipseEdgeEffect& ellipseEffect = drawEffect.castEffect(); return ellipseEffect.isStroked() ? 0x1 : 0x0; } virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE { } private: typedef GrGLEffect INHERITED; }; private: EllipseEdgeEffect(bool stroke) : GrEffect() { this->addVertexAttrib(kVec2f_GrSLType); this->addVertexAttrib(kVec4f_GrSLType); fStroke = stroke; } virtual bool onIsEqual(const GrEffect& other) const SK_OVERRIDE { const EllipseEdgeEffect& eee = CastEffect(other); return eee.fStroke == fStroke; } bool fStroke; GR_DECLARE_EFFECT_TEST; typedef GrEffect INHERITED; }; GR_DEFINE_EFFECT_TEST(EllipseEdgeEffect); GrEffectRef* EllipseEdgeEffect::TestCreate(SkMWCRandom* random, GrContext* context, const GrDrawTargetCaps&, GrTexture* textures[]) { return EllipseEdgeEffect::Create(random->nextBool()); } /////////////////////////////////////////////////////////////////////////////// bool GrOvalRenderer::drawOval(GrDrawTarget* target, const GrContext* context, const GrPaint& paint, const GrRect& oval, const SkStrokeRec& stroke) { if (!paint.isAntiAlias()) { return false; } const SkMatrix& vm = context->getMatrix(); // we can draw circles if (SkScalarNearlyEqual(oval.width(), oval.height()) && circle_stays_circle(vm)) { drawCircle(target, paint, oval, stroke); // and axis-aligned ellipses only } else if (vm.rectStaysRect()) { return drawEllipse(target, paint, oval, stroke); } else { return false; } return true; } void GrOvalRenderer::drawCircle(GrDrawTarget* target, const GrPaint& paint, const GrRect& circle, const SkStrokeRec& stroke) { GrDrawState* drawState = target->drawState(); const SkMatrix& vm = drawState->getViewMatrix(); GrPoint center = GrPoint::Make(circle.centerX(), circle.centerY()); vm.mapPoints(¢er, 1); SkScalar radius = vm.mapRadius(SkScalarHalf(circle.width())); SkScalar strokeWidth = vm.mapRadius(stroke.getWidth()); GrDrawState::AutoDeviceCoordDraw adcd(drawState); if (!adcd.succeeded()) { return; } // position + edge static const GrVertexAttrib kVertexAttribs[] = { {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, {kVec4f_GrVertexAttribType, sizeof(GrPoint), kEffect_GrVertexAttribBinding} }; drawState->setVertexAttribs(kVertexAttribs, SK_ARRAY_COUNT(kVertexAttribs)); GrAssert(sizeof(CircleVertex) == drawState->getVertexSize()); GrDrawTarget::AutoReleaseGeometry geo(target, 4, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return; } CircleVertex* verts = reinterpret_cast(geo.vertices()); SkStrokeRec::Style style = stroke.getStyle(); bool isStroked = (SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style); enum { // the edge effects share this stage with glyph rendering // (kGlyphMaskStage in GrTextContext) && SW path rendering // (kPathMaskStage in GrSWMaskHelper) kEdgeEffectStage = GrPaint::kTotalStages, }; GrEffectRef* effect = CircleEdgeEffect::Create(isStroked); static const int kCircleEdgeAttrIndex = 1; drawState->setEffect(kEdgeEffectStage, effect, kCircleEdgeAttrIndex)->unref(); SkScalar innerRadius = 0.0f; SkScalar outerRadius = radius; SkScalar halfWidth = 0; if (style != SkStrokeRec::kFill_Style) { if (SkScalarNearlyZero(strokeWidth)) { halfWidth = SK_ScalarHalf; } else { halfWidth = SkScalarHalf(strokeWidth); } outerRadius += halfWidth; if (isStroked) { innerRadius = SkMaxScalar(0, radius - halfWidth); } } // The radii are outset for two reasons. First, it allows the shader to simply perform // clamp(distance-to-center - radius, 0, 1). Second, the outer radius is used to compute the // verts of the bounding box that is rendered and the outset ensures the box will cover all // pixels partially covered by the circle. outerRadius += SK_ScalarHalf; innerRadius -= SK_ScalarHalf; SkRect bounds = SkRect::MakeLTRB( center.fX - outerRadius, center.fY - outerRadius, center.fX + outerRadius, center.fY + outerRadius ); verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); verts[0].fOffset = SkPoint::Make(-outerRadius, -outerRadius); verts[0].fOuterRadius = outerRadius; verts[0].fInnerRadius = innerRadius; verts[1].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); verts[1].fOffset = SkPoint::Make(outerRadius, -outerRadius); verts[1].fOuterRadius = outerRadius; verts[1].fInnerRadius = innerRadius; verts[2].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); verts[2].fOffset = SkPoint::Make(-outerRadius, outerRadius); verts[2].fOuterRadius = outerRadius; verts[2].fInnerRadius = innerRadius; verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); verts[3].fOffset = SkPoint::Make(outerRadius, outerRadius); verts[3].fOuterRadius = outerRadius; verts[3].fInnerRadius = innerRadius; target->drawNonIndexed(kTriangleStrip_GrPrimitiveType, 0, 4, &bounds); } bool GrOvalRenderer::drawEllipse(GrDrawTarget* target, const GrPaint& paint, const GrRect& ellipse, const SkStrokeRec& stroke) { GrDrawState* drawState = target->drawState(); #ifdef SK_DEBUG { // we should have checked for this previously bool isAxisAlignedEllipse = drawState->getViewMatrix().rectStaysRect(); SkASSERT(paint.isAntiAlias() && isAxisAlignedEllipse); } #endif const SkMatrix& vm = drawState->getViewMatrix(); GrPoint center = GrPoint::Make(ellipse.centerX(), ellipse.centerY()); vm.mapPoints(¢er, 1); SkRect xformedRect; vm.mapRect(&xformedRect, ellipse); SkScalar xRadius = SkScalarHalf(xformedRect.width()); SkScalar yRadius = SkScalarHalf(xformedRect.height()); if (SkScalarDiv(xRadius, yRadius) > 2 || SkScalarDiv(yRadius, xRadius) > 2) { return false; } GrDrawState::AutoDeviceCoordDraw adcd(drawState); if (!adcd.succeeded()) { return false; } // position + edge static const GrVertexAttrib kVertexAttribs[] = { {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, {kVec2f_GrVertexAttribType, sizeof(GrPoint), kEffect_GrVertexAttribBinding}, {kVec4f_GrVertexAttribType, 2*sizeof(GrPoint), kEffect_GrVertexAttribBinding} }; drawState->setVertexAttribs(kVertexAttribs, SK_ARRAY_COUNT(kVertexAttribs)); GrAssert(sizeof(EllipseVertex) == drawState->getVertexSize()); GrDrawTarget::AutoReleaseGeometry geo(target, 4, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return false; } EllipseVertex* verts = reinterpret_cast(geo.vertices()); SkStrokeRec::Style style = stroke.getStyle(); bool isStroked = (SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style); enum { // the edge effects share this stage with glyph rendering // (kGlyphMaskStage in GrTextContext) && SW path rendering // (kPathMaskStage in GrSWMaskHelper) kEdgeEffectStage = GrPaint::kTotalStages, }; GrEffectRef* effect = EllipseEdgeEffect::Create(isStroked); static const int kEllipseCenterAttrIndex = 1; static const int kEllipseEdgeAttrIndex = 2; drawState->setEffect(kEdgeEffectStage, effect, kEllipseCenterAttrIndex, kEllipseEdgeAttrIndex)->unref(); SkScalar innerXRadius = 0.0f; SkScalar innerRatio = 1.0f; if (SkStrokeRec::kFill_Style != style) { SkScalar strokeWidth = stroke.getWidth(); // do (potentially) anisotropic mapping SkVector scaledStroke; scaledStroke.set(strokeWidth, strokeWidth); vm.mapVectors(&scaledStroke, 1); if (SkScalarNearlyZero(scaledStroke.length())) { scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf); } else { scaledStroke.scale(0.5f); } // this is legit only if scale & translation (which should be the case at the moment) if (SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style) { SkScalar innerYRadius = SkMaxScalar(0, yRadius - scaledStroke.fY); if (innerYRadius > SK_ScalarNearlyZero) { innerXRadius = SkMaxScalar(0, xRadius - scaledStroke.fX); innerRatio = innerXRadius/innerYRadius; } } xRadius += scaledStroke.fX; yRadius += scaledStroke.fY; } SkScalar outerRatio = SkScalarDiv(xRadius, yRadius); // We've extended the outer x radius out half a pixel to antialias. // This will also expand the rect so all the pixels will be captured. xRadius += SK_ScalarHalf; yRadius += SK_ScalarHalf; innerXRadius -= SK_ScalarHalf; SkRect bounds = SkRect::MakeLTRB( center.fX - xRadius, center.fY - yRadius, center.fX + xRadius, center.fY + yRadius ); // The offsets are created by scaling the y radius by the appropriate ratio. This way we end up // with a circle equation which can be checked quickly in the shader. We need one offset for // outer and one for inner because they have different scale factors -- otherwise we end up with // non-uniform strokes. verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); verts[0].fOuterXRadius = xRadius; verts[0].fInnerXRadius = innerXRadius; verts[0].fOuterOffset = SkPoint::Make(-xRadius, -outerRatio*yRadius); verts[0].fInnerOffset = SkPoint::Make(-xRadius, -innerRatio*yRadius); verts[1].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); verts[1].fOuterXRadius = xRadius; verts[1].fInnerXRadius = innerXRadius; verts[1].fOuterOffset = SkPoint::Make(xRadius, -outerRatio*yRadius); verts[1].fInnerOffset = SkPoint::Make(xRadius, -innerRatio*yRadius); verts[2].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); verts[2].fOuterXRadius = xRadius; verts[2].fInnerXRadius = innerXRadius; verts[2].fOuterOffset = SkPoint::Make(-xRadius, outerRatio*yRadius); verts[2].fInnerOffset = SkPoint::Make(-xRadius, innerRatio*yRadius); verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); verts[3].fOuterXRadius = xRadius; verts[3].fInnerXRadius = innerXRadius; verts[3].fOuterOffset = SkPoint::Make(xRadius, outerRatio*yRadius); verts[3].fInnerOffset = SkPoint::Make(xRadius, innerRatio*yRadius); target->drawNonIndexed(kTriangleStrip_GrPrimitiveType, 0, 4, &bounds); return true; }