/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrOvalRenderer.h" #include "gl/builders/GrGLProgramBuilder.h" #include "gl/GrGLProcessor.h" #include "gl/GrGLSL.h" #include "gl/GrGLGeometryProcessor.h" #include "GrProcessor.h" #include "GrTBackendProcessorFactory.h" #include "GrDrawState.h" #include "GrDrawTarget.h" #include "GrGpu.h" #include "SkRRect.h" #include "SkStrokeRec.h" #include "SkTLazy.h" #include "GrGeometryProcessor.h" #include "effects/GrRRectEffect.h" namespace { struct CircleVertex { SkPoint fPos; SkPoint fOffset; SkScalar fOuterRadius; SkScalar fInnerRadius; }; struct EllipseVertex { SkPoint fPos; SkPoint fOffset; SkPoint fOuterRadii; SkPoint fInnerRadii; }; struct DIEllipseVertex { SkPoint fPos; SkPoint fOuterOffset; SkPoint fInnerOffset; }; inline bool circle_stays_circle(const SkMatrix& m) { return m.isSimilarity(); } } /////////////////////////////////////////////////////////////////////////////// /** * The output of this effect is a modulation of the input color and coverage for a circle, * specified as offset_x, offset_y (both from center point), outer radius and inner radius. */ class CircleEdgeEffect : public GrGeometryProcessor { public: static GrGeometryProcessor* Create(bool stroke) { GR_CREATE_STATIC_GEOMETRY_PROCESSOR(gCircleStrokeEdge, CircleEdgeEffect, (true)); GR_CREATE_STATIC_GEOMETRY_PROCESSOR(gCircleFillEdge, CircleEdgeEffect, (false)); if (stroke) { gCircleStrokeEdge->ref(); return gCircleStrokeEdge; } else { gCircleFillEdge->ref(); return gCircleFillEdge; } } const GrShaderVar& inCircleEdge() const { return fInCircleEdge; } virtual const GrBackendGeometryProcessorFactory& getFactory() const SK_OVERRIDE { return GrTBackendGeometryProcessorFactory::getInstance(); } virtual ~CircleEdgeEffect() {} static const char* Name() { return "CircleEdge"; } inline bool isStroked() const { return fStroke; } class GLProcessor : public GrGLGeometryProcessor { public: GLProcessor(const GrBackendProcessorFactory& factory, const GrProcessor&) : INHERITED (factory) {} virtual void emitCode(GrGLGPBuilder* builder, const GrGeometryProcessor& geometryProcessor, const GrProcessorKey& key, const char* outputColor, const char* inputColor, const TransformedCoordsArray&, const TextureSamplerArray& samplers) SK_OVERRIDE { const CircleEdgeEffect& circleEffect = geometryProcessor.cast(); const char *vsName, *fsName; builder->addVarying(kVec4f_GrSLType, "CircleEdge", &vsName, &fsName); GrGLVertexBuilder* vsBuilder = builder->getVertexShaderBuilder();; vsBuilder->codeAppendf("\t%s = %s;\n", vsName, circleEffect.inCircleEdge().c_str()); GrGLGPFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder(); fsBuilder->codeAppendf("\tfloat d = length(%s.xy);\n", fsName); fsBuilder->codeAppendf("\tfloat edgeAlpha = clamp(%s.z - d, 0.0, 1.0);\n", fsName); if (circleEffect.isStroked()) { fsBuilder->codeAppendf("\tfloat innerAlpha = clamp(d - %s.w, 0.0, 1.0);\n", fsName); fsBuilder->codeAppend("\tedgeAlpha *= innerAlpha;\n"); } fsBuilder->codeAppendf("\t%s = %s;\n", outputColor, (GrGLSLExpr4(inputColor) * GrGLSLExpr1("edgeAlpha")).c_str()); } static void GenKey(const GrProcessor& processor, const GrGLCaps&, GrProcessorKeyBuilder* b) { const CircleEdgeEffect& circleEffect = processor.cast(); b->add32(circleEffect.isStroked()); } virtual void setData(const GrGLProgramDataManager&, const GrProcessor&) SK_OVERRIDE {} private: typedef GrGLGeometryProcessor INHERITED; }; private: CircleEdgeEffect(bool stroke) : fInCircleEdge(this->addVertexAttrib( GrShaderVar("inCircleEdge", kVec4f_GrSLType, GrShaderVar::kAttribute_TypeModifier))) { fStroke = stroke; } virtual bool onIsEqual(const GrProcessor& other) const SK_OVERRIDE { const CircleEdgeEffect& cee = other.cast(); return cee.fStroke == fStroke; } virtual void onComputeInvariantOutput(InvariantOutput* inout) const SK_OVERRIDE { inout->fValidFlags = 0; inout->fIsSingleComponent = false; } const GrShaderVar& fInCircleEdge; bool fStroke; GR_DECLARE_GEOMETRY_PROCESSOR_TEST; typedef GrGeometryProcessor INHERITED; }; GR_DEFINE_GEOMETRY_PROCESSOR_TEST(CircleEdgeEffect); GrGeometryProcessor* CircleEdgeEffect::TestCreate(SkRandom* random, GrContext* context, const GrDrawTargetCaps&, GrTexture* textures[]) { return CircleEdgeEffect::Create(random->nextBool()); } /////////////////////////////////////////////////////////////////////////////// /** * The output of this effect is a modulation of the input color and coverage for an axis-aligned * ellipse, specified as a 2D offset from center, and the reciprocals of the outer and inner radii, * in both x and y directions. * * We are using an implicit function of x^2/a^2 + y^2/b^2 - 1 = 0. */ class EllipseEdgeEffect : public GrGeometryProcessor { public: static GrGeometryProcessor* Create(bool stroke) { GR_CREATE_STATIC_GEOMETRY_PROCESSOR(gEllipseStrokeEdge, EllipseEdgeEffect, (true)); GR_CREATE_STATIC_GEOMETRY_PROCESSOR(gEllipseFillEdge, EllipseEdgeEffect, (false)); if (stroke) { gEllipseStrokeEdge->ref(); return gEllipseStrokeEdge; } else { gEllipseFillEdge->ref(); return gEllipseFillEdge; } } virtual const GrBackendGeometryProcessorFactory& getFactory() const SK_OVERRIDE { return GrTBackendGeometryProcessorFactory::getInstance(); } virtual ~EllipseEdgeEffect() {} static const char* Name() { return "EllipseEdge"; } const GrShaderVar& inEllipseOffset() const { return fInEllipseOffset; } const GrShaderVar& inEllipseRadii() const { return fInEllipseRadii; } inline bool isStroked() const { return fStroke; } class GLProcessor : public GrGLGeometryProcessor { public: GLProcessor(const GrBackendProcessorFactory& factory, const GrProcessor&) : INHERITED (factory) {} virtual void emitCode(GrGLGPBuilder* builder, const GrGeometryProcessor& geometryProcessor, const GrProcessorKey& key, const char* outputColor, const char* inputColor, const TransformedCoordsArray&, const TextureSamplerArray& samplers) SK_OVERRIDE { const EllipseEdgeEffect& ellipseEffect = geometryProcessor.cast(); const char *vsOffsetName, *fsOffsetName; const char *vsRadiiName, *fsRadiiName; builder->addVarying(kVec2f_GrSLType, "EllipseOffsets", &vsOffsetName, &fsOffsetName); GrGLVertexBuilder* vsBuilder = builder->getVertexShaderBuilder(); vsBuilder->codeAppendf("%s = %s;", vsOffsetName, ellipseEffect.inEllipseOffset().c_str()); builder->addVarying(kVec4f_GrSLType, "EllipseRadii", &vsRadiiName, &fsRadiiName); vsBuilder->codeAppendf("%s = %s;", vsRadiiName, ellipseEffect.inEllipseRadii().c_str()); // for outer curve GrGLGPFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder(); fsBuilder->codeAppendf("\tvec2 scaledOffset = %s*%s.xy;\n", fsOffsetName, fsRadiiName); fsBuilder->codeAppend("\tfloat test = dot(scaledOffset, scaledOffset) - 1.0;\n"); fsBuilder->codeAppendf("\tvec2 grad = 2.0*scaledOffset*%s.xy;\n", fsRadiiName); fsBuilder->codeAppend("\tfloat grad_dot = dot(grad, grad);\n"); // avoid calling inversesqrt on zero. fsBuilder->codeAppend("\tgrad_dot = max(grad_dot, 1.0e-4);\n"); fsBuilder->codeAppend("\tfloat invlen = inversesqrt(grad_dot);\n"); fsBuilder->codeAppend("\tfloat edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);\n"); // for inner curve if (ellipseEffect.isStroked()) { fsBuilder->codeAppendf("\tscaledOffset = %s*%s.zw;\n", fsOffsetName, fsRadiiName); fsBuilder->codeAppend("\ttest = dot(scaledOffset, scaledOffset) - 1.0;\n"); fsBuilder->codeAppendf("\tgrad = 2.0*scaledOffset*%s.zw;\n", fsRadiiName); fsBuilder->codeAppend("\tinvlen = inversesqrt(dot(grad, grad));\n"); fsBuilder->codeAppend("\tedgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);\n"); } fsBuilder->codeAppendf("\t%s = %s;\n", outputColor, (GrGLSLExpr4(inputColor) * GrGLSLExpr1("edgeAlpha")).c_str()); } static void GenKey(const GrProcessor& processor, const GrGLCaps&, GrProcessorKeyBuilder* b) { const EllipseEdgeEffect& ellipseEffect = processor.cast(); b->add32(ellipseEffect.isStroked()); } virtual void setData(const GrGLProgramDataManager&, const GrProcessor&) SK_OVERRIDE { } private: typedef GrGLGeometryProcessor INHERITED; }; private: EllipseEdgeEffect(bool stroke) : fInEllipseOffset(this->addVertexAttrib( GrShaderVar("inEllipseOffset", kVec2f_GrSLType, GrShaderVar::kAttribute_TypeModifier))) , fInEllipseRadii(this->addVertexAttrib( GrShaderVar("inEllipseRadii", kVec4f_GrSLType, GrShaderVar::kAttribute_TypeModifier))) { fStroke = stroke; } virtual bool onIsEqual(const GrProcessor& other) const SK_OVERRIDE { const EllipseEdgeEffect& eee = other.cast(); return eee.fStroke == fStroke; } virtual void onComputeInvariantOutput(InvariantOutput* inout) const SK_OVERRIDE { inout->fValidFlags = 0; inout->fIsSingleComponent = false; } const GrShaderVar& fInEllipseOffset; const GrShaderVar& fInEllipseRadii; bool fStroke; GR_DECLARE_GEOMETRY_PROCESSOR_TEST; typedef GrGeometryProcessor INHERITED; }; GR_DEFINE_GEOMETRY_PROCESSOR_TEST(EllipseEdgeEffect); GrGeometryProcessor* EllipseEdgeEffect::TestCreate(SkRandom* random, GrContext* context, const GrDrawTargetCaps&, GrTexture* textures[]) { return EllipseEdgeEffect::Create(random->nextBool()); } /////////////////////////////////////////////////////////////////////////////// /** * The output of this effect is a modulation of the input color and coverage for an ellipse, * specified as a 2D offset from center for both the outer and inner paths (if stroked). The * implict equation used is for a unit circle (x^2 + y^2 - 1 = 0) and the edge corrected by * using differentials. * * The result is device-independent and can be used with any affine matrix. */ class DIEllipseEdgeEffect : public GrGeometryProcessor { public: enum Mode { kStroke = 0, kHairline, kFill }; static GrGeometryProcessor* Create(Mode mode) { GR_CREATE_STATIC_GEOMETRY_PROCESSOR(gEllipseStrokeEdge, DIEllipseEdgeEffect, (kStroke)); GR_CREATE_STATIC_GEOMETRY_PROCESSOR(gEllipseHairlineEdge, DIEllipseEdgeEffect, (kHairline)); GR_CREATE_STATIC_GEOMETRY_PROCESSOR(gEllipseFillEdge, DIEllipseEdgeEffect, (kFill)); if (kStroke == mode) { gEllipseStrokeEdge->ref(); return gEllipseStrokeEdge; } else if (kHairline == mode) { gEllipseHairlineEdge->ref(); return gEllipseHairlineEdge; } else { gEllipseFillEdge->ref(); return gEllipseFillEdge; } } virtual const GrBackendGeometryProcessorFactory& getFactory() const SK_OVERRIDE { return GrTBackendGeometryProcessorFactory::getInstance(); } virtual ~DIEllipseEdgeEffect() {} static const char* Name() { return "DIEllipseEdge"; } const GrShaderVar& inEllipseOffsets0() const { return fInEllipseOffsets0; } const GrShaderVar& inEllipseOffsets1() const { return fInEllipseOffsets1; } inline Mode getMode() const { return fMode; } class GLProcessor : public GrGLGeometryProcessor { public: GLProcessor(const GrBackendProcessorFactory& factory, const GrProcessor&) : INHERITED (factory) {} virtual void emitCode(GrGLGPBuilder* builder, const GrGeometryProcessor& geometryProcessor, const GrProcessorKey& key, const char* outputColor, const char* inputColor, const TransformedCoordsArray&, const TextureSamplerArray& samplers) SK_OVERRIDE { const DIEllipseEdgeEffect& ellipseEffect = geometryProcessor.cast(); const char *vsOffsetName0, *fsOffsetName0; builder->addVarying(kVec2f_GrSLType, "EllipseOffsets0", &vsOffsetName0, &fsOffsetName0); GrGLVertexBuilder* vsBuilder = builder->getVertexShaderBuilder(); vsBuilder->codeAppendf("%s = %s;", vsOffsetName0, ellipseEffect.inEllipseOffsets0().c_str()); const char *vsOffsetName1, *fsOffsetName1; builder->addVarying(kVec2f_GrSLType, "EllipseOffsets1", &vsOffsetName1, &fsOffsetName1); vsBuilder->codeAppendf("\t%s = %s;\n", vsOffsetName1, ellipseEffect.inEllipseOffsets1().c_str()); GrGLGPFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder(); SkAssertResult(fsBuilder->enableFeature( GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); // for outer curve fsBuilder->codeAppendf("\tvec2 scaledOffset = %s.xy;\n", fsOffsetName0); fsBuilder->codeAppend("\tfloat test = dot(scaledOffset, scaledOffset) - 1.0;\n"); fsBuilder->codeAppendf("\tvec2 duvdx = dFdx(%s);\n", fsOffsetName0); fsBuilder->codeAppendf("\tvec2 duvdy = dFdy(%s);\n", fsOffsetName0); fsBuilder->codeAppendf("\tvec2 grad = vec2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y,\n" "\t 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);\n", fsOffsetName0, fsOffsetName0, fsOffsetName0, fsOffsetName0); fsBuilder->codeAppend("\tfloat grad_dot = dot(grad, grad);\n"); // avoid calling inversesqrt on zero. fsBuilder->codeAppend("\tgrad_dot = max(grad_dot, 1.0e-4);\n"); fsBuilder->codeAppend("\tfloat invlen = inversesqrt(grad_dot);\n"); if (kHairline == ellipseEffect.getMode()) { // can probably do this with one step fsBuilder->codeAppend("\tfloat edgeAlpha = clamp(1.0-test*invlen, 0.0, 1.0);\n"); fsBuilder->codeAppend("\tedgeAlpha *= clamp(1.0+test*invlen, 0.0, 1.0);\n"); } else { fsBuilder->codeAppend("\tfloat edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);\n"); } // for inner curve if (kStroke == ellipseEffect.getMode()) { fsBuilder->codeAppendf("\tscaledOffset = %s.xy;\n", fsOffsetName1); fsBuilder->codeAppend("\ttest = dot(scaledOffset, scaledOffset) - 1.0;\n"); fsBuilder->codeAppendf("\tduvdx = dFdx(%s);\n", fsOffsetName1); fsBuilder->codeAppendf("\tduvdy = dFdy(%s);\n", fsOffsetName1); fsBuilder->codeAppendf("\tgrad = vec2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y,\n" "\t 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);\n", fsOffsetName1, fsOffsetName1, fsOffsetName1, fsOffsetName1); fsBuilder->codeAppend("\tinvlen = inversesqrt(dot(grad, grad));\n"); fsBuilder->codeAppend("\tedgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);\n"); } fsBuilder->codeAppendf("\t%s = %s;\n", outputColor, (GrGLSLExpr4(inputColor) * GrGLSLExpr1("edgeAlpha")).c_str()); } static void GenKey(const GrProcessor& processor, const GrGLCaps&, GrProcessorKeyBuilder* b) { const DIEllipseEdgeEffect& ellipseEffect = processor.cast(); b->add32(ellipseEffect.getMode()); } virtual void setData(const GrGLProgramDataManager&, const GrProcessor&) SK_OVERRIDE { } private: typedef GrGLGeometryProcessor INHERITED; }; private: DIEllipseEdgeEffect(Mode mode) : fInEllipseOffsets0(this->addVertexAttrib( GrShaderVar("inEllipseOffsets0", kVec2f_GrSLType, GrShaderVar::kAttribute_TypeModifier))) , fInEllipseOffsets1(this->addVertexAttrib( GrShaderVar("inEllipseOffsets1", kVec2f_GrSLType, GrShaderVar::kAttribute_TypeModifier))) { fMode = mode; } virtual bool onIsEqual(const GrProcessor& other) const SK_OVERRIDE { const DIEllipseEdgeEffect& eee = other.cast(); return eee.fMode == fMode; } virtual void onComputeInvariantOutput(InvariantOutput* inout) const SK_OVERRIDE { inout->fValidFlags = 0; inout->fIsSingleComponent = false; } const GrShaderVar& fInEllipseOffsets0; const GrShaderVar& fInEllipseOffsets1; Mode fMode; GR_DECLARE_GEOMETRY_PROCESSOR_TEST; typedef GrGeometryProcessor INHERITED; }; GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DIEllipseEdgeEffect); GrGeometryProcessor* DIEllipseEdgeEffect::TestCreate(SkRandom* random, GrContext* context, const GrDrawTargetCaps&, GrTexture* textures[]) { return DIEllipseEdgeEffect::Create((Mode)(random->nextRangeU(0,2))); } /////////////////////////////////////////////////////////////////////////////// void GrOvalRenderer::reset() { SkSafeSetNull(fRRectIndexBuffer); } bool GrOvalRenderer::drawOval(GrDrawTarget* target, const GrContext* context, bool useAA, const SkRect& oval, const SkStrokeRec& stroke) { bool useCoverageAA = useAA && !target->getDrawState().getRenderTarget()->isMultisampled() && !target->shouldDisableCoverageAAForBlend(); if (!useCoverageAA) { return false; } const SkMatrix& vm = context->getMatrix(); // we can draw circles if (SkScalarNearlyEqual(oval.width(), oval.height()) && circle_stays_circle(vm)) { this->drawCircle(target, useCoverageAA, oval, stroke); // if we have shader derivative support, render as device-independent } else if (target->caps()->shaderDerivativeSupport()) { return this->drawDIEllipse(target, useCoverageAA, oval, stroke); // otherwise axis-aligned ellipses only } else if (vm.rectStaysRect()) { return this->drawEllipse(target, useCoverageAA, oval, stroke); } else { return false; } return true; } /////////////////////////////////////////////////////////////////////////////// // position + edge extern const GrVertexAttrib gCircleVertexAttribs[] = { {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, {kVec4f_GrVertexAttribType, sizeof(SkPoint), kGeometryProcessor_GrVertexAttribBinding} }; void GrOvalRenderer::drawCircle(GrDrawTarget* target, bool useCoverageAA, const SkRect& circle, const SkStrokeRec& stroke) { GrDrawState* drawState = target->drawState(); const SkMatrix& vm = drawState->getViewMatrix(); SkPoint center = SkPoint::Make(circle.centerX(), circle.centerY()); vm.mapPoints(¢er, 1); SkScalar radius = vm.mapRadius(SkScalarHalf(circle.width())); SkScalar strokeWidth = vm.mapRadius(stroke.getWidth()); GrDrawState::AutoViewMatrixRestore avmr; if (!avmr.setIdentity(drawState)) { return; } drawState->setVertexAttribs(SK_ARRAY_COUNT(gCircleVertexAttribs), sizeof(CircleVertex)); GrDrawTarget::AutoReleaseGeometry geo(target, 4, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return; } CircleVertex* verts = reinterpret_cast(geo.vertices()); SkStrokeRec::Style style = stroke.getStyle(); bool isStrokeOnly = SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style; bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; SkScalar innerRadius = 0.0f; SkScalar outerRadius = radius; SkScalar halfWidth = 0; if (hasStroke) { if (SkScalarNearlyZero(strokeWidth)) { halfWidth = SK_ScalarHalf; } else { halfWidth = SkScalarHalf(strokeWidth); } outerRadius += halfWidth; if (isStrokeOnly) { innerRadius = radius - halfWidth; } } GrGeometryProcessor* gp = CircleEdgeEffect::Create(isStrokeOnly && innerRadius > 0); drawState->setGeometryProcessor(gp)->unref(); // The radii are outset for two reasons. First, it allows the shader to simply perform // clamp(distance-to-center - radius, 0, 1). Second, the outer radius is used to compute the // verts of the bounding box that is rendered and the outset ensures the box will cover all // pixels partially covered by the circle. outerRadius += SK_ScalarHalf; innerRadius -= SK_ScalarHalf; SkRect bounds = SkRect::MakeLTRB( center.fX - outerRadius, center.fY - outerRadius, center.fX + outerRadius, center.fY + outerRadius ); verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); verts[0].fOffset = SkPoint::Make(-outerRadius, -outerRadius); verts[0].fOuterRadius = outerRadius; verts[0].fInnerRadius = innerRadius; verts[1].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); verts[1].fOffset = SkPoint::Make(outerRadius, -outerRadius); verts[1].fOuterRadius = outerRadius; verts[1].fInnerRadius = innerRadius; verts[2].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); verts[2].fOffset = SkPoint::Make(-outerRadius, outerRadius); verts[2].fOuterRadius = outerRadius; verts[2].fInnerRadius = innerRadius; verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); verts[3].fOffset = SkPoint::Make(outerRadius, outerRadius); verts[3].fOuterRadius = outerRadius; verts[3].fInnerRadius = innerRadius; target->drawNonIndexed(kTriangleStrip_GrPrimitiveType, 0, 4, &bounds); } /////////////////////////////////////////////////////////////////////////////// // position + offset + 1/radii extern const GrVertexAttrib gEllipseVertexAttribs[] = { {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, {kVec2f_GrVertexAttribType, sizeof(SkPoint), kGeometryProcessor_GrVertexAttribBinding}, {kVec4f_GrVertexAttribType, 2*sizeof(SkPoint), kGeometryProcessor_GrVertexAttribBinding} }; // position + offsets extern const GrVertexAttrib gDIEllipseVertexAttribs[] = { {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, {kVec2f_GrVertexAttribType, sizeof(SkPoint), kGeometryProcessor_GrVertexAttribBinding}, {kVec2f_GrVertexAttribType, 2*sizeof(SkPoint), kGeometryProcessor_GrVertexAttribBinding}, }; bool GrOvalRenderer::drawEllipse(GrDrawTarget* target, bool useCoverageAA, const SkRect& ellipse, const SkStrokeRec& stroke) { GrDrawState* drawState = target->drawState(); #ifdef SK_DEBUG { // we should have checked for this previously bool isAxisAlignedEllipse = drawState->getViewMatrix().rectStaysRect(); SkASSERT(useCoverageAA && isAxisAlignedEllipse); } #endif // do any matrix crunching before we reset the draw state for device coords const SkMatrix& vm = drawState->getViewMatrix(); SkPoint center = SkPoint::Make(ellipse.centerX(), ellipse.centerY()); vm.mapPoints(¢er, 1); SkScalar ellipseXRadius = SkScalarHalf(ellipse.width()); SkScalar ellipseYRadius = SkScalarHalf(ellipse.height()); SkScalar xRadius = SkScalarAbs(vm[SkMatrix::kMScaleX]*ellipseXRadius + vm[SkMatrix::kMSkewY]*ellipseYRadius); SkScalar yRadius = SkScalarAbs(vm[SkMatrix::kMSkewX]*ellipseXRadius + vm[SkMatrix::kMScaleY]*ellipseYRadius); // do (potentially) anisotropic mapping of stroke SkVector scaledStroke; SkScalar strokeWidth = stroke.getWidth(); scaledStroke.fX = SkScalarAbs(strokeWidth*(vm[SkMatrix::kMScaleX] + vm[SkMatrix::kMSkewY])); scaledStroke.fY = SkScalarAbs(strokeWidth*(vm[SkMatrix::kMSkewX] + vm[SkMatrix::kMScaleY])); SkStrokeRec::Style style = stroke.getStyle(); bool isStrokeOnly = SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style; bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; SkScalar innerXRadius = 0; SkScalar innerYRadius = 0; if (hasStroke) { if (SkScalarNearlyZero(scaledStroke.length())) { scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf); } else { scaledStroke.scale(SK_ScalarHalf); } // we only handle thick strokes for near-circular ellipses if (scaledStroke.length() > SK_ScalarHalf && (SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) { return false; } // we don't handle it if curvature of the stroke is less than curvature of the ellipse if (scaledStroke.fX*(yRadius*yRadius) < (scaledStroke.fY*scaledStroke.fY)*xRadius || scaledStroke.fY*(xRadius*xRadius) < (scaledStroke.fX*scaledStroke.fX)*yRadius) { return false; } // this is legit only if scale & translation (which should be the case at the moment) if (isStrokeOnly) { innerXRadius = xRadius - scaledStroke.fX; innerYRadius = yRadius - scaledStroke.fY; } xRadius += scaledStroke.fX; yRadius += scaledStroke.fY; } GrDrawState::AutoViewMatrixRestore avmr; if (!avmr.setIdentity(drawState)) { return false; } drawState->setVertexAttribs(SK_ARRAY_COUNT(gEllipseVertexAttribs), sizeof(EllipseVertex)); GrDrawTarget::AutoReleaseGeometry geo(target, 4, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return false; } EllipseVertex* verts = reinterpret_cast(geo.vertices()); GrGeometryProcessor* gp = EllipseEdgeEffect::Create(isStrokeOnly && innerXRadius > 0 && innerYRadius > 0); drawState->setGeometryProcessor(gp)->unref(); // Compute the reciprocals of the radii here to save time in the shader SkScalar xRadRecip = SkScalarInvert(xRadius); SkScalar yRadRecip = SkScalarInvert(yRadius); SkScalar xInnerRadRecip = SkScalarInvert(innerXRadius); SkScalar yInnerRadRecip = SkScalarInvert(innerYRadius); // We've extended the outer x radius out half a pixel to antialias. // This will also expand the rect so all the pixels will be captured. // TODO: Consider if we should use sqrt(2)/2 instead xRadius += SK_ScalarHalf; yRadius += SK_ScalarHalf; SkRect bounds = SkRect::MakeLTRB( center.fX - xRadius, center.fY - yRadius, center.fX + xRadius, center.fY + yRadius ); verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); verts[0].fOffset = SkPoint::Make(-xRadius, -yRadius); verts[0].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); verts[0].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); verts[1].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); verts[1].fOffset = SkPoint::Make(xRadius, -yRadius); verts[1].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); verts[1].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); verts[2].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); verts[2].fOffset = SkPoint::Make(-xRadius, yRadius); verts[2].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); verts[2].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); verts[3].fOffset = SkPoint::Make(xRadius, yRadius); verts[3].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); verts[3].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); target->drawNonIndexed(kTriangleStrip_GrPrimitiveType, 0, 4, &bounds); return true; } bool GrOvalRenderer::drawDIEllipse(GrDrawTarget* target, bool useCoverageAA, const SkRect& ellipse, const SkStrokeRec& stroke) { GrDrawState* drawState = target->drawState(); const SkMatrix& vm = drawState->getViewMatrix(); SkPoint center = SkPoint::Make(ellipse.centerX(), ellipse.centerY()); SkScalar xRadius = SkScalarHalf(ellipse.width()); SkScalar yRadius = SkScalarHalf(ellipse.height()); SkStrokeRec::Style style = stroke.getStyle(); DIEllipseEdgeEffect::Mode mode = (SkStrokeRec::kStroke_Style == style) ? DIEllipseEdgeEffect::kStroke : (SkStrokeRec::kHairline_Style == style) ? DIEllipseEdgeEffect::kHairline : DIEllipseEdgeEffect::kFill; SkScalar innerXRadius = 0; SkScalar innerYRadius = 0; if (SkStrokeRec::kFill_Style != style && SkStrokeRec::kHairline_Style != style) { SkScalar strokeWidth = stroke.getWidth(); if (SkScalarNearlyZero(strokeWidth)) { strokeWidth = SK_ScalarHalf; } else { strokeWidth *= SK_ScalarHalf; } // we only handle thick strokes for near-circular ellipses if (strokeWidth > SK_ScalarHalf && (SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) { return false; } // we don't handle it if curvature of the stroke is less than curvature of the ellipse if (strokeWidth*(yRadius*yRadius) < (strokeWidth*strokeWidth)*xRadius || strokeWidth*(xRadius*xRadius) < (strokeWidth*strokeWidth)*yRadius) { return false; } // set inner radius (if needed) if (SkStrokeRec::kStroke_Style == style) { innerXRadius = xRadius - strokeWidth; innerYRadius = yRadius - strokeWidth; } xRadius += strokeWidth; yRadius += strokeWidth; } if (DIEllipseEdgeEffect::kStroke == mode) { mode = (innerXRadius > 0 && innerYRadius > 0) ? DIEllipseEdgeEffect::kStroke : DIEllipseEdgeEffect::kFill; } SkScalar innerRatioX = SkScalarDiv(xRadius, innerXRadius); SkScalar innerRatioY = SkScalarDiv(yRadius, innerYRadius); drawState->setVertexAttribs(SK_ARRAY_COUNT(gDIEllipseVertexAttribs), sizeof(DIEllipseVertex)); GrDrawTarget::AutoReleaseGeometry geo(target, 4, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return false; } DIEllipseVertex* verts = reinterpret_cast(geo.vertices()); GrGeometryProcessor* gp = DIEllipseEdgeEffect::Create(mode); drawState->setGeometryProcessor(gp)->unref(); // This expands the outer rect so that after CTM we end up with a half-pixel border SkScalar a = vm[SkMatrix::kMScaleX]; SkScalar b = vm[SkMatrix::kMSkewX]; SkScalar c = vm[SkMatrix::kMSkewY]; SkScalar d = vm[SkMatrix::kMScaleY]; SkScalar geoDx = SkScalarDiv(SK_ScalarHalf, SkScalarSqrt(a*a + c*c)); SkScalar geoDy = SkScalarDiv(SK_ScalarHalf, SkScalarSqrt(b*b + d*d)); // This adjusts the "radius" to include the half-pixel border SkScalar offsetDx = SkScalarDiv(geoDx, xRadius); SkScalar offsetDy = SkScalarDiv(geoDy, yRadius); SkRect bounds = SkRect::MakeLTRB( center.fX - xRadius - geoDx, center.fY - yRadius - geoDy, center.fX + xRadius + geoDx, center.fY + yRadius + geoDy ); verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); verts[0].fOuterOffset = SkPoint::Make(-1.0f - offsetDx, -1.0f - offsetDy); verts[0].fInnerOffset = SkPoint::Make(-innerRatioX - offsetDx, -innerRatioY - offsetDy); verts[1].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); verts[1].fOuterOffset = SkPoint::Make(1.0f + offsetDx, -1.0f - offsetDy); verts[1].fInnerOffset = SkPoint::Make(innerRatioX + offsetDx, -innerRatioY - offsetDy); verts[2].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); verts[2].fOuterOffset = SkPoint::Make(-1.0f - offsetDx, 1.0f + offsetDy); verts[2].fInnerOffset = SkPoint::Make(-innerRatioX - offsetDx, innerRatioY + offsetDy); verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); verts[3].fOuterOffset = SkPoint::Make(1.0f + offsetDx, 1.0f + offsetDy); verts[3].fInnerOffset = SkPoint::Make(innerRatioX + offsetDx, innerRatioY + offsetDy); target->drawNonIndexed(kTriangleStrip_GrPrimitiveType, 0, 4, &bounds); return true; } /////////////////////////////////////////////////////////////////////////////// static const uint16_t gRRectIndices[] = { // corners 0, 1, 5, 0, 5, 4, 2, 3, 7, 2, 7, 6, 8, 9, 13, 8, 13, 12, 10, 11, 15, 10, 15, 14, // edges 1, 2, 6, 1, 6, 5, 4, 5, 9, 4, 9, 8, 6, 7, 11, 6, 11, 10, 9, 10, 14, 9, 14, 13, // center // we place this at the end so that we can ignore these indices when rendering stroke-only 5, 6, 10, 5, 10, 9 }; GrIndexBuffer* GrOvalRenderer::rRectIndexBuffer(GrGpu* gpu) { if (NULL == fRRectIndexBuffer) { fRRectIndexBuffer = gpu->createIndexBuffer(sizeof(gRRectIndices), false); if (fRRectIndexBuffer) { #ifdef SK_DEBUG bool updated = #endif fRRectIndexBuffer->updateData(gRRectIndices, sizeof(gRRectIndices)); GR_DEBUGASSERT(updated); } } return fRRectIndexBuffer; } bool GrOvalRenderer::drawDRRect(GrDrawTarget* target, GrContext* context, bool useAA, const SkRRect& origOuter, const SkRRect& origInner) { bool applyAA = useAA && !target->getDrawState().getRenderTarget()->isMultisampled() && !target->shouldDisableCoverageAAForBlend(); GrDrawState::AutoRestoreEffects are; if (!origInner.isEmpty()) { SkTCopyOnFirstWrite inner(origInner); if (!context->getMatrix().isIdentity()) { if (!origInner.transform(context->getMatrix(), inner.writable())) { return false; } } GrPrimitiveEdgeType edgeType = applyAA ? kInverseFillAA_GrProcessorEdgeType : kInverseFillBW_GrProcessorEdgeType; GrFragmentProcessor* fp = GrRRectEffect::Create(edgeType, *inner); if (NULL == fp) { return false; } are.set(target->drawState()); target->drawState()->addCoverageProcessor(fp)->unref(); } SkStrokeRec fillRec(SkStrokeRec::kFill_InitStyle); if (this->drawRRect(target, context, useAA, origOuter, fillRec)) { return true; } SkASSERT(!origOuter.isEmpty()); SkTCopyOnFirstWrite outer(origOuter); if (!context->getMatrix().isIdentity()) { if (!origOuter.transform(context->getMatrix(), outer.writable())) { return false; } } GrPrimitiveEdgeType edgeType = applyAA ? kFillAA_GrProcessorEdgeType : kFillBW_GrProcessorEdgeType; GrFragmentProcessor* effect = GrRRectEffect::Create(edgeType, *outer); if (NULL == effect) { return false; } if (!are.isSet()) { are.set(target->drawState()); } GrDrawState::AutoViewMatrixRestore avmr; if (!avmr.setIdentity(target->drawState())) { return false; } target->drawState()->addCoverageProcessor(effect)->unref(); SkRect bounds = outer->getBounds(); if (applyAA) { bounds.outset(SK_ScalarHalf, SK_ScalarHalf); } target->drawRect(bounds, NULL, NULL); return true; } bool GrOvalRenderer::drawRRect(GrDrawTarget* target, GrContext* context, bool useAA, const SkRRect& rrect, const SkStrokeRec& stroke) { if (rrect.isOval()) { return this->drawOval(target, context, useAA, rrect.getBounds(), stroke); } bool useCoverageAA = useAA && !target->getDrawState().getRenderTarget()->isMultisampled() && !target->shouldDisableCoverageAAForBlend(); // only anti-aliased rrects for now if (!useCoverageAA) { return false; } const SkMatrix& vm = context->getMatrix(); if (!vm.rectStaysRect() || !rrect.isSimple()) { return false; } // do any matrix crunching before we reset the draw state for device coords const SkRect& rrectBounds = rrect.getBounds(); SkRect bounds; vm.mapRect(&bounds, rrectBounds); SkVector radii = rrect.getSimpleRadii(); SkScalar xRadius = SkScalarAbs(vm[SkMatrix::kMScaleX]*radii.fX + vm[SkMatrix::kMSkewY]*radii.fY); SkScalar yRadius = SkScalarAbs(vm[SkMatrix::kMSkewX]*radii.fX + vm[SkMatrix::kMScaleY]*radii.fY); SkStrokeRec::Style style = stroke.getStyle(); // do (potentially) anisotropic mapping of stroke SkVector scaledStroke; SkScalar strokeWidth = stroke.getWidth(); bool isStrokeOnly = SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style; bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; if (hasStroke) { if (SkStrokeRec::kHairline_Style == style) { scaledStroke.set(1, 1); } else { scaledStroke.fX = SkScalarAbs(strokeWidth*(vm[SkMatrix::kMScaleX] + vm[SkMatrix::kMSkewY])); scaledStroke.fY = SkScalarAbs(strokeWidth*(vm[SkMatrix::kMSkewX] + vm[SkMatrix::kMScaleY])); } // if half of strokewidth is greater than radius, we don't handle that right now if (SK_ScalarHalf*scaledStroke.fX > xRadius || SK_ScalarHalf*scaledStroke.fY > yRadius) { return false; } } // The way the effect interpolates the offset-to-ellipse/circle-center attribute only works on // the interior of the rrect if the radii are >= 0.5. Otherwise, the inner rect of the nine- // patch will have fractional coverage. This only matters when the interior is actually filled. // We could consider falling back to rect rendering here, since a tiny radius is // indistinguishable from a square corner. if (!isStrokeOnly && (SK_ScalarHalf > xRadius || SK_ScalarHalf > yRadius)) { return false; } // reset to device coordinates GrDrawState* drawState = target->drawState(); GrDrawState::AutoViewMatrixRestore avmr; if (!avmr.setIdentity(drawState)) { return false; } GrIndexBuffer* indexBuffer = this->rRectIndexBuffer(context->getGpu()); if (NULL == indexBuffer) { GrPrintf("Failed to create index buffer!\n"); return false; } // if the corners are circles, use the circle renderer if ((!hasStroke || scaledStroke.fX == scaledStroke.fY) && xRadius == yRadius) { drawState->setVertexAttribs(SK_ARRAY_COUNT(gCircleVertexAttribs), sizeof(CircleVertex)); GrDrawTarget::AutoReleaseGeometry geo(target, 16, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return false; } CircleVertex* verts = reinterpret_cast(geo.vertices()); SkScalar innerRadius = 0.0f; SkScalar outerRadius = xRadius; SkScalar halfWidth = 0; if (hasStroke) { if (SkScalarNearlyZero(scaledStroke.fX)) { halfWidth = SK_ScalarHalf; } else { halfWidth = SkScalarHalf(scaledStroke.fX); } if (isStrokeOnly) { innerRadius = xRadius - halfWidth; } outerRadius += halfWidth; bounds.outset(halfWidth, halfWidth); } isStrokeOnly = (isStrokeOnly && innerRadius >= 0); GrGeometryProcessor* effect = CircleEdgeEffect::Create(isStrokeOnly); drawState->setGeometryProcessor(effect)->unref(); // The radii are outset for two reasons. First, it allows the shader to simply perform // clamp(distance-to-center - radius, 0, 1). Second, the outer radius is used to compute the // verts of the bounding box that is rendered and the outset ensures the box will cover all // pixels partially covered by the circle. outerRadius += SK_ScalarHalf; innerRadius -= SK_ScalarHalf; // Expand the rect so all the pixels will be captured. bounds.outset(SK_ScalarHalf, SK_ScalarHalf); SkScalar yCoords[4] = { bounds.fTop, bounds.fTop + outerRadius, bounds.fBottom - outerRadius, bounds.fBottom }; SkScalar yOuterRadii[4] = { -outerRadius, 0, 0, outerRadius }; for (int i = 0; i < 4; ++i) { verts->fPos = SkPoint::Make(bounds.fLeft, yCoords[i]); verts->fOffset = SkPoint::Make(-outerRadius, yOuterRadii[i]); verts->fOuterRadius = outerRadius; verts->fInnerRadius = innerRadius; verts++; verts->fPos = SkPoint::Make(bounds.fLeft + outerRadius, yCoords[i]); verts->fOffset = SkPoint::Make(0, yOuterRadii[i]); verts->fOuterRadius = outerRadius; verts->fInnerRadius = innerRadius; verts++; verts->fPos = SkPoint::Make(bounds.fRight - outerRadius, yCoords[i]); verts->fOffset = SkPoint::Make(0, yOuterRadii[i]); verts->fOuterRadius = outerRadius; verts->fInnerRadius = innerRadius; verts++; verts->fPos = SkPoint::Make(bounds.fRight, yCoords[i]); verts->fOffset = SkPoint::Make(outerRadius, yOuterRadii[i]); verts->fOuterRadius = outerRadius; verts->fInnerRadius = innerRadius; verts++; } // drop out the middle quad if we're stroked int indexCnt = isStrokeOnly ? SK_ARRAY_COUNT(gRRectIndices) - 6 : SK_ARRAY_COUNT(gRRectIndices); target->setIndexSourceToBuffer(indexBuffer); target->drawIndexed(kTriangles_GrPrimitiveType, 0, 0, 16, indexCnt, &bounds); // otherwise we use the ellipse renderer } else { drawState->setVertexAttribs(SK_ARRAY_COUNT(gEllipseVertexAttribs), sizeof(EllipseVertex)); SkScalar innerXRadius = 0.0f; SkScalar innerYRadius = 0.0f; if (hasStroke) { if (SkScalarNearlyZero(scaledStroke.length())) { scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf); } else { scaledStroke.scale(SK_ScalarHalf); } // we only handle thick strokes for near-circular ellipses if (scaledStroke.length() > SK_ScalarHalf && (SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) { return false; } // we don't handle it if curvature of the stroke is less than curvature of the ellipse if (scaledStroke.fX*(yRadius*yRadius) < (scaledStroke.fY*scaledStroke.fY)*xRadius || scaledStroke.fY*(xRadius*xRadius) < (scaledStroke.fX*scaledStroke.fX)*yRadius) { return false; } // this is legit only if scale & translation (which should be the case at the moment) if (isStrokeOnly) { innerXRadius = xRadius - scaledStroke.fX; innerYRadius = yRadius - scaledStroke.fY; } xRadius += scaledStroke.fX; yRadius += scaledStroke.fY; bounds.outset(scaledStroke.fX, scaledStroke.fY); } isStrokeOnly = (isStrokeOnly && innerXRadius >= 0 && innerYRadius >= 0); GrDrawTarget::AutoReleaseGeometry geo(target, 16, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return false; } EllipseVertex* verts = reinterpret_cast(geo.vertices()); GrGeometryProcessor* effect = EllipseEdgeEffect::Create(isStrokeOnly); drawState->setGeometryProcessor(effect)->unref(); // Compute the reciprocals of the radii here to save time in the shader SkScalar xRadRecip = SkScalarInvert(xRadius); SkScalar yRadRecip = SkScalarInvert(yRadius); SkScalar xInnerRadRecip = SkScalarInvert(innerXRadius); SkScalar yInnerRadRecip = SkScalarInvert(innerYRadius); // Extend the radii out half a pixel to antialias. SkScalar xOuterRadius = xRadius + SK_ScalarHalf; SkScalar yOuterRadius = yRadius + SK_ScalarHalf; // Expand the rect so all the pixels will be captured. bounds.outset(SK_ScalarHalf, SK_ScalarHalf); SkScalar yCoords[4] = { bounds.fTop, bounds.fTop + yOuterRadius, bounds.fBottom - yOuterRadius, bounds.fBottom }; SkScalar yOuterOffsets[4] = { yOuterRadius, SK_ScalarNearlyZero, // we're using inversesqrt() in the shader, so can't be exactly 0 SK_ScalarNearlyZero, yOuterRadius }; for (int i = 0; i < 4; ++i) { verts->fPos = SkPoint::Make(bounds.fLeft, yCoords[i]); verts->fOffset = SkPoint::Make(xOuterRadius, yOuterOffsets[i]); verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); verts++; verts->fPos = SkPoint::Make(bounds.fLeft + xOuterRadius, yCoords[i]); verts->fOffset = SkPoint::Make(SK_ScalarNearlyZero, yOuterOffsets[i]); verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); verts++; verts->fPos = SkPoint::Make(bounds.fRight - xOuterRadius, yCoords[i]); verts->fOffset = SkPoint::Make(SK_ScalarNearlyZero, yOuterOffsets[i]); verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); verts++; verts->fPos = SkPoint::Make(bounds.fRight, yCoords[i]); verts->fOffset = SkPoint::Make(xOuterRadius, yOuterOffsets[i]); verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); verts++; } // drop out the middle quad if we're stroked int indexCnt = isStrokeOnly ? SK_ARRAY_COUNT(gRRectIndices) - 6 : SK_ARRAY_COUNT(gRRectIndices); target->setIndexSourceToBuffer(indexBuffer); target->drawIndexed(kTriangles_GrPrimitiveType, 0, 0, 16, indexCnt, &bounds); } return true; }