/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrOvalRenderer.h" #include "GrEffect.h" #include "gl/GrGLEffect.h" #include "gl/GrGLSL.h" #include "GrTBackendEffectFactory.h" #include "GrDrawState.h" #include "GrDrawTarget.h" #include "GrGpu.h" #include "SkRRect.h" #include "SkStrokeRec.h" SK_DEFINE_INST_COUNT(GrOvalRenderer) namespace { struct CircleVertex { GrPoint fPos; GrPoint fOffset; SkScalar fOuterRadius; SkScalar fInnerRadius; }; struct EllipseVertex { GrPoint fPos; GrPoint fOffset; GrPoint fOuterRadii; GrPoint fInnerRadii; }; inline bool circle_stays_circle(const SkMatrix& m) { return m.isSimilarity(); } } /////////////////////////////////////////////////////////////////////////////// /** * The output of this effect is a modulation of the input color and coverage for a circle, * specified as offset_x, offset_y (both from center point), outer radius and inner radius. */ class CircleEdgeEffect : public GrEffect { public: static GrEffectRef* Create(bool stroke) { GR_CREATE_STATIC_EFFECT(gCircleStrokeEdge, CircleEdgeEffect, (true)); GR_CREATE_STATIC_EFFECT(gCircleFillEdge, CircleEdgeEffect, (false)); if (stroke) { gCircleStrokeEdge->ref(); return gCircleStrokeEdge; } else { gCircleFillEdge->ref(); return gCircleFillEdge; } } virtual void getConstantColorComponents(GrColor* color, uint32_t* validFlags) const SK_OVERRIDE { *validFlags = 0; } virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE { return GrTBackendEffectFactory::getInstance(); } virtual ~CircleEdgeEffect() {} static const char* Name() { return "CircleEdge"; } inline bool isStroked() const { return fStroke; } class GLEffect : public GrGLEffect { public: GLEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&) : INHERITED (factory) {} virtual void emitCode(GrGLShaderBuilder* builder, const GrDrawEffect& drawEffect, EffectKey key, const char* outputColor, const char* inputColor, const TextureSamplerArray& samplers) SK_OVERRIDE { const CircleEdgeEffect& circleEffect = drawEffect.castEffect(); const char *vsName, *fsName; builder->addVarying(kVec4f_GrSLType, "CircleEdge", &vsName, &fsName); const SkString* attrName = builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[0]); builder->vsCodeAppendf("\t%s = %s;\n", vsName, attrName->c_str()); builder->fsCodeAppendf("\tfloat d = length(%s.xy);\n", fsName); builder->fsCodeAppendf("\tfloat edgeAlpha = clamp(%s.z - d, 0.0, 1.0);\n", fsName); if (circleEffect.isStroked()) { builder->fsCodeAppendf("\tfloat innerAlpha = clamp(d - %s.w, 0.0, 1.0);\n", fsName); builder->fsCodeAppend("\tedgeAlpha *= innerAlpha;\n"); } SkString modulate; GrGLSLModulatef<4>(&modulate, inputColor, "edgeAlpha"); builder->fsCodeAppendf("\t%s = %s;\n", outputColor, modulate.c_str()); } static inline EffectKey GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) { const CircleEdgeEffect& circleEffect = drawEffect.castEffect(); return circleEffect.isStroked() ? 0x1 : 0x0; } virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE {} private: typedef GrGLEffect INHERITED; }; private: CircleEdgeEffect(bool stroke) : GrEffect() { this->addVertexAttrib(kVec4f_GrSLType); fStroke = stroke; } virtual bool onIsEqual(const GrEffect& other) const SK_OVERRIDE { const CircleEdgeEffect& cee = CastEffect(other); return cee.fStroke == fStroke; } bool fStroke; GR_DECLARE_EFFECT_TEST; typedef GrEffect INHERITED; }; GR_DEFINE_EFFECT_TEST(CircleEdgeEffect); GrEffectRef* CircleEdgeEffect::TestCreate(SkMWCRandom* random, GrContext* context, const GrDrawTargetCaps&, GrTexture* textures[]) { return CircleEdgeEffect::Create(random->nextBool()); } /////////////////////////////////////////////////////////////////////////////// /** * The output of this effect is a modulation of the input color and coverage for an axis-aligned * ellipse, specified as a 2D offset from center, and the squares of the outer and inner radii, in * both x and y directions. We are using an implicit function of b^2x^2 + a^2y^2 - (ab)^2 = 0. */ class EllipseEdgeEffect : public GrEffect { public: static GrEffectRef* Create(bool stroke) { GR_CREATE_STATIC_EFFECT(gEllipseStrokeEdge, EllipseEdgeEffect, (true)); GR_CREATE_STATIC_EFFECT(gEllipseFillEdge, EllipseEdgeEffect, (false)); if (stroke) { gEllipseStrokeEdge->ref(); return gEllipseStrokeEdge; } else { gEllipseFillEdge->ref(); return gEllipseFillEdge; } } virtual void getConstantColorComponents(GrColor* color, uint32_t* validFlags) const SK_OVERRIDE { *validFlags = 0; } virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE { return GrTBackendEffectFactory::getInstance(); } virtual ~EllipseEdgeEffect() {} static const char* Name() { return "EllipseEdge"; } inline bool isStroked() const { return fStroke; } class GLEffect : public GrGLEffect { public: GLEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&) : INHERITED (factory) {} virtual void emitCode(GrGLShaderBuilder* builder, const GrDrawEffect& drawEffect, EffectKey key, const char* outputColor, const char* inputColor, const TextureSamplerArray& samplers) SK_OVERRIDE { const EllipseEdgeEffect& ellipseEffect = drawEffect.castEffect(); const char *vsOffsetName, *fsOffsetName; const char *vsRadiiName, *fsRadiiName; builder->addVarying(kVec2f_GrSLType, "EllipseOffsets", &vsOffsetName, &fsOffsetName); const SkString* attr0Name = builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[0]); builder->vsCodeAppendf("\t%s = %s;\n", vsOffsetName, attr0Name->c_str()); builder->addVarying(kVec4f_GrSLType, "EllipseRadii", &vsRadiiName, &fsRadiiName); const SkString* attr1Name = builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[1]); builder->vsCodeAppendf("\t%s = %s;\n", vsRadiiName, attr1Name->c_str()); builder->fsCodeAppend("\tfloat edgeAlpha;\n"); builder->fsCodeAppendf("\tvec2 offsq = %s*%s;\n", fsOffsetName, fsOffsetName); // for outer curve builder->fsCodeAppendf("\tfloat C = %s.x*%s.y;\n", fsRadiiName, fsRadiiName); builder->fsCodeAppendf("\tfloat dist = dot(offsq, %s.yx) - C;\n", fsRadiiName); builder->fsCodeAppendf("\tvec2 grad = 2.0*%s.xy*%s.yx;\n", fsOffsetName, fsRadiiName); builder->fsCodeAppend("\tfloat invlen = inversesqrt(dot(grad, grad));\n"); builder->fsCodeAppend("\tedgeAlpha = clamp(0.5-dist*invlen, 0.0, 1.0);\n"); // for inner curve if (ellipseEffect.isStroked()) { builder->fsCodeAppendf("\tC = %s.z*%s.w;\n", fsRadiiName, fsRadiiName); builder->fsCodeAppendf("\tdist = dot(offsq, %s.wz) - C;\n", fsRadiiName); builder->fsCodeAppendf("\tgrad = 2.0*%s.xy*%s.wz;\n", fsOffsetName, fsRadiiName); builder->fsCodeAppend("\tinvlen = inversesqrt(dot(grad, grad));\n"); builder->fsCodeAppend("\tedgeAlpha *= clamp(dist*invlen+0.5, 0.0, 1.0);\n"); } SkString modulate; GrGLSLModulatef<4>(&modulate, inputColor, "edgeAlpha"); builder->fsCodeAppendf("\t%s = %s;\n", outputColor, modulate.c_str()); } static inline EffectKey GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) { const EllipseEdgeEffect& ellipseEffect = drawEffect.castEffect(); return ellipseEffect.isStroked() ? 0x1 : 0x0; } virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE { } private: typedef GrGLEffect INHERITED; }; private: EllipseEdgeEffect(bool stroke) : GrEffect() { this->addVertexAttrib(kVec2f_GrSLType); this->addVertexAttrib(kVec4f_GrSLType); fStroke = stroke; } virtual bool onIsEqual(const GrEffect& other) const SK_OVERRIDE { const EllipseEdgeEffect& eee = CastEffect(other); return eee.fStroke == fStroke; } bool fStroke; GR_DECLARE_EFFECT_TEST; typedef GrEffect INHERITED; }; GR_DEFINE_EFFECT_TEST(EllipseEdgeEffect); GrEffectRef* EllipseEdgeEffect::TestCreate(SkMWCRandom* random, GrContext* context, const GrDrawTargetCaps&, GrTexture* textures[]) { return EllipseEdgeEffect::Create(random->nextBool()); } /////////////////////////////////////////////////////////////////////////////// bool GrOvalRenderer::drawOval(GrDrawTarget* target, const GrContext* context, bool useAA, const GrRect& oval, const SkStrokeRec& stroke) { if (!useAA) { return false; } const SkMatrix& vm = context->getMatrix(); // we can draw circles if (SkScalarNearlyEqual(oval.width(), oval.height()) && circle_stays_circle(vm)) { this->drawCircle(target, useAA, oval, stroke); // and axis-aligned ellipses only } else if (vm.rectStaysRect()) { return this->drawEllipse(target, useAA, oval, stroke); } else { return false; } return true; } namespace { /////////////////////////////////////////////////////////////////////////////// // position + edge extern const GrVertexAttrib gCircleVertexAttribs[] = { {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, {kVec4f_GrVertexAttribType, sizeof(GrPoint), kEffect_GrVertexAttribBinding} }; }; void GrOvalRenderer::drawCircle(GrDrawTarget* target, bool useAA, const GrRect& circle, const SkStrokeRec& stroke) { GrDrawState* drawState = target->drawState(); const SkMatrix& vm = drawState->getViewMatrix(); GrPoint center = GrPoint::Make(circle.centerX(), circle.centerY()); vm.mapPoints(¢er, 1); SkScalar radius = vm.mapRadius(SkScalarHalf(circle.width())); SkScalar strokeWidth = vm.mapRadius(stroke.getWidth()); GrDrawState::AutoDeviceCoordDraw adcd(drawState); if (!adcd.succeeded()) { return; } drawState->setVertexAttribs(SK_ARRAY_COUNT(gCircleVertexAttribs)); GrAssert(sizeof(CircleVertex) == drawState->getVertexSize()); GrDrawTarget::AutoReleaseGeometry geo(target, 4, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return; } CircleVertex* verts = reinterpret_cast(geo.vertices()); SkStrokeRec::Style style = stroke.getStyle(); bool isStroked = (SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style); enum { // the edge effects share this stage with glyph rendering // (kGlyphMaskStage in GrTextContext) && SW path rendering // (kPathMaskStage in GrSWMaskHelper) kEdgeEffectStage = GrPaint::kTotalStages, }; GrEffectRef* effect = CircleEdgeEffect::Create(isStroked); static const int kCircleEdgeAttrIndex = 1; drawState->setEffect(kEdgeEffectStage, effect, kCircleEdgeAttrIndex)->unref(); SkScalar innerRadius = 0.0f; SkScalar outerRadius = radius; SkScalar halfWidth = 0; if (style != SkStrokeRec::kFill_Style) { if (SkScalarNearlyZero(strokeWidth)) { halfWidth = SK_ScalarHalf; } else { halfWidth = SkScalarHalf(strokeWidth); } outerRadius += halfWidth; if (isStroked) { innerRadius = SkMaxScalar(0, radius - halfWidth); } } // The radii are outset for two reasons. First, it allows the shader to simply perform // clamp(distance-to-center - radius, 0, 1). Second, the outer radius is used to compute the // verts of the bounding box that is rendered and the outset ensures the box will cover all // pixels partially covered by the circle. outerRadius += SK_ScalarHalf; innerRadius -= SK_ScalarHalf; SkRect bounds = SkRect::MakeLTRB( center.fX - outerRadius, center.fY - outerRadius, center.fX + outerRadius, center.fY + outerRadius ); verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); verts[0].fOffset = SkPoint::Make(-outerRadius, -outerRadius); verts[0].fOuterRadius = outerRadius; verts[0].fInnerRadius = innerRadius; verts[1].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); verts[1].fOffset = SkPoint::Make(outerRadius, -outerRadius); verts[1].fOuterRadius = outerRadius; verts[1].fInnerRadius = innerRadius; verts[2].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); verts[2].fOffset = SkPoint::Make(-outerRadius, outerRadius); verts[2].fOuterRadius = outerRadius; verts[2].fInnerRadius = innerRadius; verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); verts[3].fOffset = SkPoint::Make(outerRadius, outerRadius); verts[3].fOuterRadius = outerRadius; verts[3].fInnerRadius = innerRadius; target->drawNonIndexed(kTriangleStrip_GrPrimitiveType, 0, 4, &bounds); } /////////////////////////////////////////////////////////////////////////////// namespace { // position + edge extern const GrVertexAttrib gEllipseVertexAttribs[] = { {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, {kVec2f_GrVertexAttribType, sizeof(GrPoint), kEffect_GrVertexAttribBinding}, {kVec4f_GrVertexAttribType, 2*sizeof(GrPoint), kEffect_GrVertexAttribBinding} }; }; bool GrOvalRenderer::drawEllipse(GrDrawTarget* target, bool useAA, const GrRect& ellipse, const SkStrokeRec& stroke) { GrDrawState* drawState = target->drawState(); #ifdef SK_DEBUG { // we should have checked for this previously bool isAxisAlignedEllipse = drawState->getViewMatrix().rectStaysRect(); SkASSERT(useAA && isAxisAlignedEllipse); } #endif // do any matrix crunching before we reset the draw state for device coords const SkMatrix& vm = drawState->getViewMatrix(); GrPoint center = GrPoint::Make(ellipse.centerX(), ellipse.centerY()); vm.mapPoints(¢er, 1); SkScalar ellipseXRadius = SkScalarHalf(ellipse.width()); SkScalar ellipseYRadius = SkScalarHalf(ellipse.height()); SkScalar xRadius = SkScalarAbs(vm[SkMatrix::kMScaleX]*ellipseXRadius + vm[SkMatrix::kMSkewY]*ellipseYRadius); SkScalar yRadius = SkScalarAbs(vm[SkMatrix::kMSkewX]*ellipseXRadius + vm[SkMatrix::kMScaleY]*ellipseYRadius); // do (potentially) anisotropic mapping of stroke SkVector scaledStroke; SkScalar strokeWidth = stroke.getWidth(); scaledStroke.fX = SkScalarAbs(strokeWidth*(vm[SkMatrix::kMScaleX] + vm[SkMatrix::kMSkewY])); scaledStroke.fY = SkScalarAbs(strokeWidth*(vm[SkMatrix::kMSkewX] + vm[SkMatrix::kMScaleY])); SkStrokeRec::Style style = stroke.getStyle(); bool isStroked = (SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style); SkScalar innerXRadius = 0.0f; SkScalar innerYRadius = 0.0f; if (SkStrokeRec::kFill_Style != style) { if (SkScalarNearlyZero(scaledStroke.length())) { scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf); } else { scaledStroke.scale(0.5f); } // we don't handle it if curvature of the stroke is less than curvature of the ellipse if (scaledStroke.fX/(scaledStroke.fY*scaledStroke.fY) < xRadius/(yRadius*yRadius) || scaledStroke.fY/(scaledStroke.fX*scaledStroke.fX) < yRadius/(xRadius*xRadius)) { return false; } // this is legit only if scale & translation (which should be the case at the moment) if (SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style) { innerYRadius = SkMaxScalar(0, yRadius - scaledStroke.fY); innerXRadius = SkMaxScalar(0, xRadius - scaledStroke.fX); } xRadius += scaledStroke.fX; yRadius += scaledStroke.fY; } GrDrawState::AutoDeviceCoordDraw adcd(drawState); if (!adcd.succeeded()) { return false; } drawState->setVertexAttribs(SK_ARRAY_COUNT(gEllipseVertexAttribs)); GrAssert(sizeof(EllipseVertex) == drawState->getVertexSize()); GrDrawTarget::AutoReleaseGeometry geo(target, 4, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return false; } EllipseVertex* verts = reinterpret_cast(geo.vertices()); enum { // the edge effects share this stage with glyph rendering // (kGlyphMaskStage in GrTextContext) && SW path rendering // (kPathMaskStage in GrSWMaskHelper) kEdgeEffectStage = GrPaint::kTotalStages, }; GrEffectRef* effect = EllipseEdgeEffect::Create(isStroked && innerXRadius > 0.0 && innerYRadius > 0.0); static const int kEllipseCenterAttrIndex = 1; static const int kEllipseEdgeAttrIndex = 2; drawState->setEffect(kEdgeEffectStage, effect, kEllipseCenterAttrIndex, kEllipseEdgeAttrIndex)->unref(); SkScalar xRadSq = xRadius*xRadius; SkScalar yRadSq = yRadius*yRadius; SkScalar xInnerRadSq = innerXRadius*innerXRadius; SkScalar yInnerRadSq = innerYRadius*innerYRadius; // We've extended the outer x radius out half a pixel to antialias. // This will also expand the rect so all the pixels will be captured. // TODO: Consider if we should use sqrt(2)/2 instead xRadius += SK_ScalarHalf; yRadius += SK_ScalarHalf; SkRect bounds = SkRect::MakeLTRB( center.fX - xRadius, center.fY - yRadius, center.fX + xRadius, center.fY + yRadius ); // We set the squares of the radii here to save time in the shader verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); verts[0].fOffset = SkPoint::Make(-xRadius, -yRadius); verts[0].fOuterRadii = SkPoint::Make(xRadSq, yRadSq); verts[0].fInnerRadii = SkPoint::Make(xInnerRadSq, yInnerRadSq); verts[1].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); verts[1].fOffset = SkPoint::Make(xRadius, -yRadius); verts[1].fOuterRadii = SkPoint::Make(xRadSq, yRadSq); verts[1].fInnerRadii = SkPoint::Make(xInnerRadSq, yInnerRadSq); verts[2].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); verts[2].fOffset = SkPoint::Make(-xRadius, yRadius); verts[2].fOuterRadii = SkPoint::Make(xRadSq, yRadSq); verts[2].fInnerRadii = SkPoint::Make(xInnerRadSq, yInnerRadSq); verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); verts[3].fOffset = SkPoint::Make(xRadius, yRadius); verts[3].fOuterRadii = SkPoint::Make(xRadSq, yRadSq); verts[3].fInnerRadii = SkPoint::Make(xInnerRadSq, yInnerRadSq); target->drawNonIndexed(kTriangleStrip_GrPrimitiveType, 0, 4, &bounds); return true; } /////////////////////////////////////////////////////////////////////////////// static const uint16_t gRRectIndices[] = { // corners 0, 1, 5, 0, 5, 4, 2, 3, 7, 2, 7, 6, 8, 9, 13, 8, 13, 12, 10, 11, 15, 10, 15, 14, // edges 1, 2, 6, 1, 6, 5, 4, 5, 9, 4, 9, 8, 6, 7, 11, 6, 11, 10, 9, 10, 14, 9, 14, 13, // center // we place this at the end so that we can ignore these indices when rendering stroke-only 5, 6, 10, 5, 10, 9 }; GrIndexBuffer* GrOvalRenderer::rRectIndexBuffer(GrGpu* gpu) { if (NULL == fRRectIndexBuffer) { fRRectIndexBuffer = gpu->createIndexBuffer(sizeof(gRRectIndices), false); if (NULL != fRRectIndexBuffer) { #if GR_DEBUG bool updated = #endif fRRectIndexBuffer->updateData(gRRectIndices, sizeof(gRRectIndices)); GR_DEBUGASSERT(updated); } } return fRRectIndexBuffer; } bool GrOvalRenderer::drawSimpleRRect(GrDrawTarget* target, GrContext* context, bool useAA, const SkRRect& rrect, const SkStrokeRec& stroke) { // only anti-aliased rrects for now if (!useAA) { return false; } const SkMatrix& vm = context->getMatrix(); #ifdef SK_DEBUG { // we should have checked for this previously SkASSERT(useAA && vm.rectStaysRect() && rrect.isSimple()); } #endif // do any matrix crunching before we reset the draw state for device coords const SkRect& rrectBounds = rrect.getBounds(); SkRect bounds; vm.mapRect(&bounds, rrectBounds); SkVector radii = rrect.getSimpleRadii(); SkScalar xRadius = SkScalarAbs(vm[SkMatrix::kMScaleX]*radii.fX + vm[SkMatrix::kMSkewY]*radii.fY); SkScalar yRadius = SkScalarAbs(vm[SkMatrix::kMSkewX]*radii.fX + vm[SkMatrix::kMScaleY]*radii.fY); // if hairline stroke is greater than radius, we don't handle that right now SkStrokeRec::Style style = stroke.getStyle(); if (SkStrokeRec::kHairline_Style == style && (SK_ScalarHalf >= xRadius || SK_ScalarHalf >= yRadius)) { return false; } // do (potentially) anisotropic mapping of stroke SkVector scaledStroke; SkScalar strokeWidth = stroke.getWidth(); scaledStroke.fX = SkScalarAbs(strokeWidth*(vm[SkMatrix::kMScaleX] + vm[SkMatrix::kMSkewY])); scaledStroke.fY = SkScalarAbs(strokeWidth*(vm[SkMatrix::kMSkewX] + vm[SkMatrix::kMScaleY])); // if half of strokewidth is greater than radius, we don't handle that right now if (SK_ScalarHalf*scaledStroke.fX >= xRadius || SK_ScalarHalf*scaledStroke.fY >= yRadius) { return false; } // reset to device coordinates GrDrawState* drawState = target->drawState(); GrDrawState::AutoDeviceCoordDraw adcd(drawState); if (!adcd.succeeded()) { return false; } bool isStroked = (SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style); enum { // the edge effects share this stage with glyph rendering // (kGlyphMaskStage in GrTextContext) && SW path rendering // (kPathMaskStage in GrSWMaskHelper) kEdgeEffectStage = GrPaint::kTotalStages, }; GrIndexBuffer* indexBuffer = this->rRectIndexBuffer(context->getGpu()); if (NULL == indexBuffer) { GrPrintf("Failed to create index buffer!\n"); return false; } // if the corners are circles, use the circle renderer if ((!isStroked || scaledStroke.fX == scaledStroke.fY) && xRadius == yRadius) { drawState->setVertexAttribs(SK_ARRAY_COUNT(gCircleVertexAttribs)); GrAssert(sizeof(CircleVertex) == drawState->getVertexSize()); GrDrawTarget::AutoReleaseGeometry geo(target, 16, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return false; } CircleVertex* verts = reinterpret_cast(geo.vertices()); GrEffectRef* effect = CircleEdgeEffect::Create(isStroked); static const int kCircleEdgeAttrIndex = 1; drawState->setEffect(kEdgeEffectStage, effect, kCircleEdgeAttrIndex)->unref(); SkScalar innerRadius = 0.0f; SkScalar outerRadius = xRadius; SkScalar halfWidth = 0; if (style != SkStrokeRec::kFill_Style) { if (SkScalarNearlyZero(scaledStroke.fX)) { halfWidth = SK_ScalarHalf; } else { halfWidth = SkScalarHalf(scaledStroke.fX); } if (isStroked) { innerRadius = SkMaxScalar(0, xRadius - halfWidth); } outerRadius += halfWidth; bounds.outset(halfWidth, halfWidth); } // The radii are outset for two reasons. First, it allows the shader to simply perform // clamp(distance-to-center - radius, 0, 1). Second, the outer radius is used to compute the // verts of the bounding box that is rendered and the outset ensures the box will cover all // pixels partially covered by the circle. outerRadius += SK_ScalarHalf; innerRadius -= SK_ScalarHalf; // Expand the rect so all the pixels will be captured. bounds.outset(SK_ScalarHalf, SK_ScalarHalf); SkScalar yCoords[4] = { bounds.fTop, bounds.fTop + outerRadius, bounds.fBottom - outerRadius, bounds.fBottom }; SkScalar yOuterRadii[4] = { -outerRadius, 0, 0, outerRadius }; for (int i = 0; i < 4; ++i) { verts->fPos = SkPoint::Make(bounds.fLeft, yCoords[i]); verts->fOffset = SkPoint::Make(-outerRadius, yOuterRadii[i]); verts->fOuterRadius = outerRadius; verts->fInnerRadius = innerRadius; verts++; verts->fPos = SkPoint::Make(bounds.fLeft + outerRadius, yCoords[i]); verts->fOffset = SkPoint::Make(0, yOuterRadii[i]); verts->fOuterRadius = outerRadius; verts->fInnerRadius = innerRadius; verts++; verts->fPos = SkPoint::Make(bounds.fRight - outerRadius, yCoords[i]); verts->fOffset = SkPoint::Make(0, yOuterRadii[i]); verts->fOuterRadius = outerRadius; verts->fInnerRadius = innerRadius; verts++; verts->fPos = SkPoint::Make(bounds.fRight, yCoords[i]); verts->fOffset = SkPoint::Make(outerRadius, yOuterRadii[i]); verts->fOuterRadius = outerRadius; verts->fInnerRadius = innerRadius; verts++; } // drop out the middle quad if we're stroked int indexCnt = isStroked ? GR_ARRAY_COUNT(gRRectIndices)-6 : GR_ARRAY_COUNT(gRRectIndices); target->setIndexSourceToBuffer(indexBuffer); target->drawIndexed(kTriangles_GrPrimitiveType, 0, 0, 16, indexCnt, &bounds); // otherwise we use the ellipse renderer } else { drawState->setVertexAttribs(SK_ARRAY_COUNT(gEllipseVertexAttribs)); GrAssert(sizeof(EllipseVertex) == drawState->getVertexSize()); SkScalar innerXRadius = 0.0f; SkScalar innerYRadius = 0.0f; if (SkStrokeRec::kFill_Style != style) { if (SkScalarNearlyZero(scaledStroke.length())) { scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf); } else { scaledStroke.scale(0.5f); } // we don't handle it if curvature of the stroke is less than curvature of the ellipse if (scaledStroke.fX/(scaledStroke.fY*scaledStroke.fY) < xRadius/(yRadius*yRadius) || scaledStroke.fY/(scaledStroke.fX*scaledStroke.fX) < yRadius/(xRadius*xRadius)) { return false; } // this is legit only if scale & translation (which should be the case at the moment) if (SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style) { innerXRadius = SkMaxScalar(0, xRadius - scaledStroke.fX); innerYRadius = SkMaxScalar(0, yRadius - scaledStroke.fY); } xRadius += scaledStroke.fX; yRadius += scaledStroke.fY; bounds.outset(scaledStroke.fX, scaledStroke.fY); } GrDrawTarget::AutoReleaseGeometry geo(target, 16, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return false; } EllipseVertex* verts = reinterpret_cast(geo.vertices()); GrEffectRef* effect = EllipseEdgeEffect::Create(isStroked); static const int kEllipseOffsetAttrIndex = 1; static const int kEllipseRadiiAttrIndex = 2; drawState->setEffect(kEdgeEffectStage, effect, kEllipseOffsetAttrIndex, kEllipseRadiiAttrIndex)->unref(); // Compute the squares of the radii here to save time in the shader SkScalar xRadSq = xRadius*xRadius; SkScalar yRadSq = yRadius*yRadius; SkScalar xInnerRadSq = innerXRadius*innerXRadius; SkScalar yInnerRadSq = innerYRadius*innerYRadius; // Extend the radii out half a pixel to antialias. SkScalar xOuterRadius = xRadius + SK_ScalarHalf; SkScalar yOuterRadius = yRadius + SK_ScalarHalf; // Expand the rect so all the pixels will be captured. bounds.outset(SK_ScalarHalf, SK_ScalarHalf); SkScalar yCoords[4] = { bounds.fTop, bounds.fTop + yOuterRadius, bounds.fBottom - yOuterRadius, bounds.fBottom }; SkScalar yOuterOffsets[4] = { -yOuterRadius, SK_ScalarNearlyZero, // we're using inversesqrt() in the shader, so can't be exactly 0 SK_ScalarNearlyZero, yOuterRadius }; for (int i = 0; i < 4; ++i) { verts->fPos = SkPoint::Make(bounds.fLeft, yCoords[i]); verts->fOffset = SkPoint::Make(-xOuterRadius, yOuterOffsets[i]); verts->fOuterRadii = SkPoint::Make(xRadSq, yRadSq); verts->fInnerRadii = SkPoint::Make(xInnerRadSq, yInnerRadSq); verts++; verts->fPos = SkPoint::Make(bounds.fLeft + xOuterRadius, yCoords[i]); verts->fOffset = SkPoint::Make(SK_ScalarNearlyZero, yOuterOffsets[i]); verts->fOuterRadii = SkPoint::Make(xRadSq, yRadSq); verts->fInnerRadii = SkPoint::Make(xInnerRadSq, yInnerRadSq); verts++; verts->fPos = SkPoint::Make(bounds.fRight - xOuterRadius, yCoords[i]); verts->fOffset = SkPoint::Make(SK_ScalarNearlyZero, yOuterOffsets[i]); verts->fOuterRadii = SkPoint::Make(xRadSq, yRadSq); verts->fInnerRadii = SkPoint::Make(xInnerRadSq, yInnerRadSq); verts++; verts->fPos = SkPoint::Make(bounds.fRight, yCoords[i]); verts->fOffset = SkPoint::Make(xOuterRadius, yOuterOffsets[i]); verts->fOuterRadii = SkPoint::Make(xRadSq, yRadSq); verts->fInnerRadii = SkPoint::Make(xInnerRadSq, yInnerRadSq); verts++; } // drop out the middle quad if we're stroked int indexCnt = isStroked ? GR_ARRAY_COUNT(gRRectIndices)-6 : GR_ARRAY_COUNT(gRRectIndices); target->setIndexSourceToBuffer(indexBuffer); target->drawIndexed(kTriangles_GrPrimitiveType, 0, 0, 16, indexCnt, &bounds); } return true; }