/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrOvalRenderer.h" #include "GrProcessor.h" #include "GrDrawState.h" #include "GrDrawTarget.h" #include "GrGeometryProcessor.h" #include "GrGpu.h" #include "GrInvariantOutput.h" #include "SkRRect.h" #include "SkStrokeRec.h" #include "SkTLazy.h" #include "effects/GrRRectEffect.h" #include "gl/GrGLProcessor.h" #include "gl/GrGLSL.h" #include "gl/GrGLGeometryProcessor.h" #include "gl/builders/GrGLProgramBuilder.h" namespace { // TODO(joshualitt) add per vertex colors struct CircleVertex { SkPoint fPos; SkPoint fOffset; SkScalar fOuterRadius; SkScalar fInnerRadius; }; struct EllipseVertex { SkPoint fPos; SkPoint fOffset; SkPoint fOuterRadii; SkPoint fInnerRadii; }; struct DIEllipseVertex { SkPoint fPos; SkPoint fOuterOffset; SkPoint fInnerOffset; }; inline bool circle_stays_circle(const SkMatrix& m) { return m.isSimilarity(); } } /////////////////////////////////////////////////////////////////////////////// /** * The output of this effect is a modulation of the input color and coverage for a circle. It * operates in a space normalized by the circle radius (outer radius in the case of a stroke) * with origin at the circle center. Two vertex attributes are used: * vec2f : position in device space of the bounding geometry vertices * vec4f : (p.xy, outerRad, innerRad) * p is the position in the normalized space. * outerRad is the outerRadius in device space. * innerRad is the innerRadius in normalized space (ignored if not stroking). */ class CircleEdgeEffect : public GrGeometryProcessor { public: static GrGeometryProcessor* Create(GrColor color, bool stroke, const SkMatrix& localMatrix) { return SkNEW_ARGS(CircleEdgeEffect, (color, stroke, localMatrix)); } const Attribute* inPosition() const { return fInPosition; } const Attribute* inCircleEdge() const { return fInCircleEdge; } virtual ~CircleEdgeEffect() {} const char* name() const SK_OVERRIDE { return "CircleEdge"; } inline bool isStroked() const { return fStroke; } class GLProcessor : public GrGLGeometryProcessor { public: GLProcessor(const GrGeometryProcessor&, const GrBatchTracker&) : fColor(GrColor_ILLEGAL) {} void onEmitCode(EmitArgs& args) SK_OVERRIDE { const CircleEdgeEffect& ce = args.fGP.cast(); GrGLGPBuilder* pb = args.fPB; const BatchTracker& local = args.fBT.cast(); GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder(); // emit attributes vsBuilder->emitAttributes(ce); GrGLVertToFrag v(kVec4f_GrSLType); args.fPB->addVarying("CircleEdge", &v); vsBuilder->codeAppendf("%s = %s;", v.vsOut(), ce.inCircleEdge()->fName); // Setup pass through color this->setupColorPassThrough(pb, local.fInputColorType, args.fOutputColor, NULL, &fColorUniform); // setup uniform viewMatrix this->addUniformViewMatrix(pb); // Setup position vsBuilder->codeAppendf("%s = %s * vec3(%s, 1);", this->position(), this->uViewM(), ce.inPosition()->fName); // emit transforms this->emitTransforms(args.fPB, this->position(), ce.inPosition()->fName, ce.localMatrix(), args.fTransformsIn, args.fTransformsOut);; GrGLGPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); fsBuilder->codeAppendf("float d = length(%s.xy);", v.fsIn()); fsBuilder->codeAppendf("float edgeAlpha = clamp(%s.z * (1.0 - d), 0.0, 1.0);", v.fsIn()); if (ce.isStroked()) { fsBuilder->codeAppendf("float innerAlpha = clamp(%s.z * (d - %s.w), 0.0, 1.0);", v.fsIn(), v.fsIn()); fsBuilder->codeAppend("edgeAlpha *= innerAlpha;"); } fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage); } static void GenKey(const GrGeometryProcessor& processor, const GrBatchTracker& bt, const GrGLCaps&, GrProcessorKeyBuilder* b) { const BatchTracker& local = bt.cast(); const CircleEdgeEffect& circleEffect = processor.cast(); uint16_t key = circleEffect.isStroked() ? 0x1 : 0x0; key |= local.fUsesLocalCoords && processor.localMatrix().hasPerspective() ? 0x2 : 0x0; b->add32(key << 16 | local.fInputColorType); } virtual void setData(const GrGLProgramDataManager& pdman, const GrPrimitiveProcessor& gp, const GrBatchTracker& bt) SK_OVERRIDE { this->setUniformViewMatrix(pdman, gp.viewMatrix()); const BatchTracker& local = bt.cast(); if (kUniform_GrGPInput == local.fInputColorType && local.fColor != fColor) { GrGLfloat c[4]; GrColorToRGBAFloat(local.fColor, c); pdman.set4fv(fColorUniform, 1, c); fColor = local.fColor; } } private: GrColor fColor; UniformHandle fColorUniform; typedef GrGLGeometryProcessor INHERITED; }; virtual void getGLProcessorKey(const GrBatchTracker& bt, const GrGLCaps& caps, GrProcessorKeyBuilder* b) const SK_OVERRIDE { GLProcessor::GenKey(*this, bt, caps, b); } virtual GrGLPrimitiveProcessor* createGLInstance(const GrBatchTracker& bt, const GrGLCaps&) const SK_OVERRIDE { return SkNEW_ARGS(GLProcessor, (*this, bt)); } void initBatchTracker(GrBatchTracker* bt, const InitBT& init) const SK_OVERRIDE { BatchTracker* local = bt->cast(); local->fInputColorType = GetColorInputType(&local->fColor, this->color(), init, false); local->fUsesLocalCoords = init.fUsesLocalCoords; } bool onCanMakeEqual(const GrBatchTracker& m, const GrGeometryProcessor& that, const GrBatchTracker& t) const SK_OVERRIDE { const BatchTracker& mine = m.cast(); const BatchTracker& theirs = t.cast(); return CanCombineLocalMatrices(*this, mine.fUsesLocalCoords, that, theirs.fUsesLocalCoords) && CanCombineOutput(mine.fInputColorType, mine.fColor, theirs.fInputColorType, theirs.fColor); } private: CircleEdgeEffect(GrColor color, bool stroke, const SkMatrix& localMatrix) : INHERITED(color, SkMatrix::I(), localMatrix) { this->initClassID(); fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType)); fInCircleEdge = &this->addVertexAttrib(Attribute("inCircleEdge", kVec4f_GrVertexAttribType)); fStroke = stroke; } bool onIsEqual(const GrGeometryProcessor& other) const SK_OVERRIDE { const CircleEdgeEffect& cee = other.cast(); return cee.fStroke == fStroke; } void onGetInvariantOutputCoverage(GrInitInvariantOutput* out) const SK_OVERRIDE { out->setUnknownSingleComponent(); } struct BatchTracker { GrGPInput fInputColorType; GrColor fColor; bool fUsesLocalCoords; }; const Attribute* fInPosition; const Attribute* fInCircleEdge; bool fStroke; GR_DECLARE_GEOMETRY_PROCESSOR_TEST; typedef GrGeometryProcessor INHERITED; }; GR_DEFINE_GEOMETRY_PROCESSOR_TEST(CircleEdgeEffect); GrGeometryProcessor* CircleEdgeEffect::TestCreate(SkRandom* random, GrContext* context, const GrDrawTargetCaps&, GrTexture* textures[]) { return CircleEdgeEffect::Create(GrRandomColor(random), random->nextBool(), GrProcessorUnitTest::TestMatrix(random)); } /////////////////////////////////////////////////////////////////////////////// /** * The output of this effect is a modulation of the input color and coverage for an axis-aligned * ellipse, specified as a 2D offset from center, and the reciprocals of the outer and inner radii, * in both x and y directions. * * We are using an implicit function of x^2/a^2 + y^2/b^2 - 1 = 0. */ class EllipseEdgeEffect : public GrGeometryProcessor { public: static GrGeometryProcessor* Create(GrColor color, bool stroke, const SkMatrix& localMatrix) { return SkNEW_ARGS(EllipseEdgeEffect, (color, stroke, localMatrix)); } virtual ~EllipseEdgeEffect() {} const char* name() const SK_OVERRIDE { return "EllipseEdge"; } const Attribute* inPosition() const { return fInPosition; } const Attribute* inEllipseOffset() const { return fInEllipseOffset; } const Attribute* inEllipseRadii() const { return fInEllipseRadii; } inline bool isStroked() const { return fStroke; } class GLProcessor : public GrGLGeometryProcessor { public: GLProcessor(const GrGeometryProcessor&, const GrBatchTracker&) : fColor(GrColor_ILLEGAL) {} void onEmitCode(EmitArgs& args) SK_OVERRIDE { const EllipseEdgeEffect& ee = args.fGP.cast(); GrGLGPBuilder* pb = args.fPB; const BatchTracker& local = args.fBT.cast(); GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder(); // emit attributes vsBuilder->emitAttributes(ee); GrGLVertToFrag ellipseOffsets(kVec2f_GrSLType); args.fPB->addVarying("EllipseOffsets", &ellipseOffsets); vsBuilder->codeAppendf("%s = %s;", ellipseOffsets.vsOut(), ee.inEllipseOffset()->fName); GrGLVertToFrag ellipseRadii(kVec4f_GrSLType); args.fPB->addVarying("EllipseRadii", &ellipseRadii); vsBuilder->codeAppendf("%s = %s;", ellipseRadii.vsOut(), ee.inEllipseRadii()->fName); // Setup pass through color this->setupColorPassThrough(pb, local.fInputColorType, args.fOutputColor, NULL, &fColorUniform); // setup uniform viewMatrix this->addUniformViewMatrix(pb); // Setup position vsBuilder->codeAppendf("%s = %s * vec3(%s, 1);", this->position(), this->uViewM(), ee.inPosition()->fName); // emit transforms this->emitTransforms(args.fPB, this->position(), ee.inPosition()->fName, ee.localMatrix(), args.fTransformsIn, args.fTransformsOut); // for outer curve GrGLGPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); fsBuilder->codeAppendf("vec2 scaledOffset = %s*%s.xy;", ellipseOffsets.fsIn(), ellipseRadii.fsIn()); fsBuilder->codeAppend("float test = dot(scaledOffset, scaledOffset) - 1.0;"); fsBuilder->codeAppendf("vec2 grad = 2.0*scaledOffset*%s.xy;", ellipseRadii.fsIn()); fsBuilder->codeAppend("float grad_dot = dot(grad, grad);"); // avoid calling inversesqrt on zero. fsBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);"); fsBuilder->codeAppend("float invlen = inversesqrt(grad_dot);"); fsBuilder->codeAppend("float edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);"); // for inner curve if (ee.isStroked()) { fsBuilder->codeAppendf("scaledOffset = %s*%s.zw;", ellipseOffsets.fsIn(), ellipseRadii.fsIn()); fsBuilder->codeAppend("test = dot(scaledOffset, scaledOffset) - 1.0;"); fsBuilder->codeAppendf("grad = 2.0*scaledOffset*%s.zw;", ellipseRadii.fsIn()); fsBuilder->codeAppend("invlen = inversesqrt(dot(grad, grad));"); fsBuilder->codeAppend("edgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);"); } fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage); } static void GenKey(const GrGeometryProcessor& processor, const GrBatchTracker& bt, const GrGLCaps&, GrProcessorKeyBuilder* b) { const BatchTracker& local = bt.cast(); const EllipseEdgeEffect& ellipseEffect = processor.cast(); uint16_t key = ellipseEffect.isStroked() ? 0x1 : 0x0; key |= local.fUsesLocalCoords && processor.localMatrix().hasPerspective() ? 0x2 : 0x0; b->add32(key << 16 | local.fInputColorType); } virtual void setData(const GrGLProgramDataManager& pdman, const GrPrimitiveProcessor& gp, const GrBatchTracker& bt) SK_OVERRIDE { this->setUniformViewMatrix(pdman, gp.viewMatrix()); const BatchTracker& local = bt.cast(); if (kUniform_GrGPInput == local.fInputColorType && local.fColor != fColor) { GrGLfloat c[4]; GrColorToRGBAFloat(local.fColor, c); pdman.set4fv(fColorUniform, 1, c); fColor = local.fColor; } } private: GrColor fColor; UniformHandle fColorUniform; typedef GrGLGeometryProcessor INHERITED; }; virtual void getGLProcessorKey(const GrBatchTracker& bt, const GrGLCaps& caps, GrProcessorKeyBuilder* b) const SK_OVERRIDE { GLProcessor::GenKey(*this, bt, caps, b); } virtual GrGLPrimitiveProcessor* createGLInstance(const GrBatchTracker& bt, const GrGLCaps&) const SK_OVERRIDE { return SkNEW_ARGS(GLProcessor, (*this, bt)); } void initBatchTracker(GrBatchTracker* bt, const InitBT& init) const SK_OVERRIDE { BatchTracker* local = bt->cast(); local->fInputColorType = GetColorInputType(&local->fColor, this->color(), init, false); local->fUsesLocalCoords = init.fUsesLocalCoords; } bool onCanMakeEqual(const GrBatchTracker& m, const GrGeometryProcessor& that, const GrBatchTracker& t) const SK_OVERRIDE { const BatchTracker& mine = m.cast(); const BatchTracker& theirs = t.cast(); return CanCombineLocalMatrices(*this, mine.fUsesLocalCoords, that, theirs.fUsesLocalCoords) && CanCombineOutput(mine.fInputColorType, mine.fColor, theirs.fInputColorType, theirs.fColor); } private: EllipseEdgeEffect(GrColor color, bool stroke, const SkMatrix& localMatrix) : INHERITED(color, SkMatrix::I(), localMatrix) { this->initClassID(); fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType)); fInEllipseOffset = &this->addVertexAttrib(Attribute("inEllipseOffset", kVec2f_GrVertexAttribType)); fInEllipseRadii = &this->addVertexAttrib(Attribute("inEllipseRadii", kVec4f_GrVertexAttribType)); fStroke = stroke; } bool onIsEqual(const GrGeometryProcessor& other) const SK_OVERRIDE { const EllipseEdgeEffect& eee = other.cast(); return eee.fStroke == fStroke; } void onGetInvariantOutputCoverage(GrInitInvariantOutput* out) const SK_OVERRIDE { out->setUnknownSingleComponent(); } struct BatchTracker { GrGPInput fInputColorType; GrColor fColor; bool fUsesLocalCoords; }; const Attribute* fInPosition; const Attribute* fInEllipseOffset; const Attribute* fInEllipseRadii; bool fStroke; GR_DECLARE_GEOMETRY_PROCESSOR_TEST; typedef GrGeometryProcessor INHERITED; }; GR_DEFINE_GEOMETRY_PROCESSOR_TEST(EllipseEdgeEffect); GrGeometryProcessor* EllipseEdgeEffect::TestCreate(SkRandom* random, GrContext* context, const GrDrawTargetCaps&, GrTexture* textures[]) { return EllipseEdgeEffect::Create(GrRandomColor(random), random->nextBool(), GrProcessorUnitTest::TestMatrix(random)); } /////////////////////////////////////////////////////////////////////////////// /** * The output of this effect is a modulation of the input color and coverage for an ellipse, * specified as a 2D offset from center for both the outer and inner paths (if stroked). The * implict equation used is for a unit circle (x^2 + y^2 - 1 = 0) and the edge corrected by * using differentials. * * The result is device-independent and can be used with any affine matrix. */ class DIEllipseEdgeEffect : public GrGeometryProcessor { public: enum Mode { kStroke = 0, kHairline, kFill }; static GrGeometryProcessor* Create(GrColor color, const SkMatrix& viewMatrix, Mode mode) { return SkNEW_ARGS(DIEllipseEdgeEffect, (color, viewMatrix, mode)); } virtual ~DIEllipseEdgeEffect() {} const char* name() const SK_OVERRIDE { return "DIEllipseEdge"; } const Attribute* inPosition() const { return fInPosition; } const Attribute* inEllipseOffsets0() const { return fInEllipseOffsets0; } const Attribute* inEllipseOffsets1() const { return fInEllipseOffsets1; } inline Mode getMode() const { return fMode; } class GLProcessor : public GrGLGeometryProcessor { public: GLProcessor(const GrGeometryProcessor&, const GrBatchTracker&) : fColor(GrColor_ILLEGAL) {} void onEmitCode(EmitArgs& args) SK_OVERRIDE { const DIEllipseEdgeEffect& ee = args.fGP.cast(); GrGLGPBuilder* pb = args.fPB; const BatchTracker& local = args.fBT.cast(); GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder(); // emit attributes vsBuilder->emitAttributes(ee); GrGLVertToFrag offsets0(kVec2f_GrSLType); args.fPB->addVarying("EllipseOffsets0", &offsets0); vsBuilder->codeAppendf("%s = %s;", offsets0.vsOut(), ee.inEllipseOffsets0()->fName); GrGLVertToFrag offsets1(kVec2f_GrSLType); args.fPB->addVarying("EllipseOffsets1", &offsets1); vsBuilder->codeAppendf("%s = %s;", offsets1.vsOut(), ee.inEllipseOffsets1()->fName); // Setup pass through color this->setupColorPassThrough(pb, local.fInputColorType, args.fOutputColor, NULL, &fColorUniform); // setup uniform viewMatrix this->addUniformViewMatrix(pb); // Setup position vsBuilder->codeAppendf("%s = %s * vec3(%s, 1);", this->position(), this->uViewM(), ee.inPosition()->fName); // emit transforms this->emitTransforms(args.fPB, this->position(), ee.inPosition()->fName, ee.localMatrix(), args.fTransformsIn, args.fTransformsOut); GrGLGPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); SkAssertResult(fsBuilder->enableFeature( GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); // for outer curve fsBuilder->codeAppendf("vec2 scaledOffset = %s.xy;", offsets0.fsIn()); fsBuilder->codeAppend("float test = dot(scaledOffset, scaledOffset) - 1.0;"); fsBuilder->codeAppendf("vec2 duvdx = dFdx(%s);", offsets0.fsIn()); fsBuilder->codeAppendf("vec2 duvdy = dFdy(%s);", offsets0.fsIn()); fsBuilder->codeAppendf("vec2 grad = vec2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y," " 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);", offsets0.fsIn(), offsets0.fsIn(), offsets0.fsIn(), offsets0.fsIn()); fsBuilder->codeAppend("float grad_dot = dot(grad, grad);"); // avoid calling inversesqrt on zero. fsBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);"); fsBuilder->codeAppend("float invlen = inversesqrt(grad_dot);"); if (kHairline == ee.getMode()) { // can probably do this with one step fsBuilder->codeAppend("float edgeAlpha = clamp(1.0-test*invlen, 0.0, 1.0);"); fsBuilder->codeAppend("edgeAlpha *= clamp(1.0+test*invlen, 0.0, 1.0);"); } else { fsBuilder->codeAppend("float edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);"); } // for inner curve if (kStroke == ee.getMode()) { fsBuilder->codeAppendf("scaledOffset = %s.xy;", offsets1.fsIn()); fsBuilder->codeAppend("test = dot(scaledOffset, scaledOffset) - 1.0;"); fsBuilder->codeAppendf("duvdx = dFdx(%s);", offsets1.fsIn()); fsBuilder->codeAppendf("duvdy = dFdy(%s);", offsets1.fsIn()); fsBuilder->codeAppendf("grad = vec2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y," " 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);", offsets1.fsIn(), offsets1.fsIn(), offsets1.fsIn(), offsets1.fsIn()); fsBuilder->codeAppend("invlen = inversesqrt(dot(grad, grad));"); fsBuilder->codeAppend("edgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);"); } fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage); } static void GenKey(const GrGeometryProcessor& processor, const GrBatchTracker& bt, const GrGLCaps&, GrProcessorKeyBuilder* b) { const BatchTracker& local = bt.cast(); const DIEllipseEdgeEffect& ellipseEffect = processor.cast(); uint16_t key = ellipseEffect.getMode(); key |= local.fUsesLocalCoords && processor.localMatrix().hasPerspective() ? 0x1 << 8 : 0x0; b->add32(key << 16 | local.fInputColorType); } virtual void setData(const GrGLProgramDataManager& pdman, const GrPrimitiveProcessor& gp, const GrBatchTracker& bt) SK_OVERRIDE { this->setUniformViewMatrix(pdman, gp.viewMatrix()); const BatchTracker& local = bt.cast(); if (kUniform_GrGPInput == local.fInputColorType && local.fColor != fColor) { GrGLfloat c[4]; GrColorToRGBAFloat(local.fColor, c); pdman.set4fv(fColorUniform, 1, c); fColor = local.fColor; } } private: GrColor fColor; UniformHandle fColorUniform; typedef GrGLGeometryProcessor INHERITED; }; virtual void getGLProcessorKey(const GrBatchTracker& bt, const GrGLCaps& caps, GrProcessorKeyBuilder* b) const SK_OVERRIDE { GLProcessor::GenKey(*this, bt, caps, b); } virtual GrGLPrimitiveProcessor* createGLInstance(const GrBatchTracker& bt, const GrGLCaps&) const SK_OVERRIDE { return SkNEW_ARGS(GLProcessor, (*this, bt)); } void initBatchTracker(GrBatchTracker* bt, const InitBT& init) const SK_OVERRIDE { BatchTracker* local = bt->cast(); local->fInputColorType = GetColorInputType(&local->fColor, this->color(), init, false); local->fUsesLocalCoords = init.fUsesLocalCoords; } bool onCanMakeEqual(const GrBatchTracker& m, const GrGeometryProcessor& that, const GrBatchTracker& t) const SK_OVERRIDE { const BatchTracker& mine = m.cast(); const BatchTracker& theirs = t.cast(); return CanCombineLocalMatrices(*this, mine.fUsesLocalCoords, that, theirs.fUsesLocalCoords) && CanCombineOutput(mine.fInputColorType, mine.fColor, theirs.fInputColorType, theirs.fColor); } private: DIEllipseEdgeEffect(GrColor color, const SkMatrix& viewMatrix, Mode mode) : INHERITED(color, viewMatrix) { this->initClassID(); fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType)); fInEllipseOffsets0 = &this->addVertexAttrib(Attribute("inEllipseOffsets0", kVec2f_GrVertexAttribType)); fInEllipseOffsets1 = &this->addVertexAttrib(Attribute("inEllipseOffsets1", kVec2f_GrVertexAttribType)); fMode = mode; } bool onIsEqual(const GrGeometryProcessor& other) const SK_OVERRIDE { const DIEllipseEdgeEffect& eee = other.cast(); return eee.fMode == fMode; } void onGetInvariantOutputCoverage(GrInitInvariantOutput* out) const SK_OVERRIDE { out->setUnknownSingleComponent(); } struct BatchTracker { GrGPInput fInputColorType; GrColor fColor; bool fUsesLocalCoords; }; const Attribute* fInPosition; const Attribute* fInEllipseOffsets0; const Attribute* fInEllipseOffsets1; Mode fMode; GR_DECLARE_GEOMETRY_PROCESSOR_TEST; typedef GrGeometryProcessor INHERITED; }; GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DIEllipseEdgeEffect); GrGeometryProcessor* DIEllipseEdgeEffect::TestCreate(SkRandom* random, GrContext* context, const GrDrawTargetCaps&, GrTexture* textures[]) { return DIEllipseEdgeEffect::Create(GrRandomColor(random), GrProcessorUnitTest::TestMatrix(random), (Mode)(random->nextRangeU(0,2))); } /////////////////////////////////////////////////////////////////////////////// void GrOvalRenderer::reset() { SkSafeSetNull(fRRectIndexBuffer); SkSafeSetNull(fStrokeRRectIndexBuffer); } bool GrOvalRenderer::drawOval(GrDrawTarget* target, GrDrawState* drawState, GrColor color, const SkMatrix& viewMatrix, bool useAA, const SkRect& oval, const SkStrokeRec& stroke) { bool useCoverageAA = useAA && !drawState->getRenderTarget()->isMultisampled() && drawState->canUseFracCoveragePrimProc(color, *target->caps()); if (!useCoverageAA) { return false; } // we can draw circles if (SkScalarNearlyEqual(oval.width(), oval.height()) && circle_stays_circle(viewMatrix)) { this->drawCircle(target, drawState, color, viewMatrix, useCoverageAA, oval, stroke); // if we have shader derivative support, render as device-independent } else if (target->caps()->shaderDerivativeSupport()) { return this->drawDIEllipse(target, drawState, color, viewMatrix, useCoverageAA, oval, stroke); // otherwise axis-aligned ellipses only } else if (viewMatrix.rectStaysRect()) { return this->drawEllipse(target, drawState, color, viewMatrix, useCoverageAA, oval, stroke); } else { return false; } return true; } /////////////////////////////////////////////////////////////////////////////// void GrOvalRenderer::drawCircle(GrDrawTarget* target, GrDrawState* drawState, GrColor color, const SkMatrix& viewMatrix, bool useCoverageAA, const SkRect& circle, const SkStrokeRec& stroke) { SkPoint center = SkPoint::Make(circle.centerX(), circle.centerY()); viewMatrix.mapPoints(¢er, 1); SkScalar radius = viewMatrix.mapRadius(SkScalarHalf(circle.width())); SkScalar strokeWidth = viewMatrix.mapRadius(stroke.getWidth()); SkMatrix invert; if (!viewMatrix.invert(&invert)) { return; } SkStrokeRec::Style style = stroke.getStyle(); bool isStrokeOnly = SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style; bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; SkScalar innerRadius = 0.0f; SkScalar outerRadius = radius; SkScalar halfWidth = 0; if (hasStroke) { if (SkScalarNearlyZero(strokeWidth)) { halfWidth = SK_ScalarHalf; } else { halfWidth = SkScalarHalf(strokeWidth); } outerRadius += halfWidth; if (isStrokeOnly) { innerRadius = radius - halfWidth; } } SkAutoTUnref gp( CircleEdgeEffect::Create(color, isStrokeOnly && innerRadius > 0,invert)); GrDrawTarget::AutoReleaseGeometry geo(target, 4, gp->getVertexStride(), 0); SkASSERT(gp->getVertexStride() == sizeof(CircleVertex)); if (!geo.succeeded()) { SkDebugf("Failed to get space for vertices!\n"); return; } CircleVertex* verts = reinterpret_cast(geo.vertices()); // The radii are outset for two reasons. First, it allows the shader to simply perform simpler // computation because the computed alpha is zero, rather than 50%, at the radius. // Second, the outer radius is used to compute the verts of the bounding box that is rendered // and the outset ensures the box will cover all partially covered by the circle. outerRadius += SK_ScalarHalf; innerRadius -= SK_ScalarHalf; SkRect bounds = SkRect::MakeLTRB( center.fX - outerRadius, center.fY - outerRadius, center.fX + outerRadius, center.fY + outerRadius ); // The inner radius in the vertex data must be specified in normalized space. innerRadius = innerRadius / outerRadius; verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); verts[0].fOffset = SkPoint::Make(-1, -1); verts[0].fOuterRadius = outerRadius; verts[0].fInnerRadius = innerRadius; verts[1].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); verts[1].fOffset = SkPoint::Make(-1, 1); verts[1].fOuterRadius = outerRadius; verts[1].fInnerRadius = innerRadius; verts[2].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); verts[2].fOffset = SkPoint::Make(1, 1); verts[2].fOuterRadius = outerRadius; verts[2].fInnerRadius = innerRadius; verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); verts[3].fOffset = SkPoint::Make(1, -1); verts[3].fOuterRadius = outerRadius; verts[3].fInnerRadius = innerRadius; target->setIndexSourceToBuffer(fGpu->getQuadIndexBuffer()); target->drawIndexedInstances(drawState, gp, kTriangles_GrPrimitiveType, 1, 4, 6, &bounds); target->resetIndexSource(); } /////////////////////////////////////////////////////////////////////////////// bool GrOvalRenderer::drawEllipse(GrDrawTarget* target, GrDrawState* drawState, GrColor color, const SkMatrix& viewMatrix, bool useCoverageAA, const SkRect& ellipse, const SkStrokeRec& stroke) { #ifdef SK_DEBUG { // we should have checked for this previously bool isAxisAlignedEllipse = viewMatrix.rectStaysRect(); SkASSERT(useCoverageAA && isAxisAlignedEllipse); } #endif // do any matrix crunching before we reset the draw state for device coords SkPoint center = SkPoint::Make(ellipse.centerX(), ellipse.centerY()); viewMatrix.mapPoints(¢er, 1); SkScalar ellipseXRadius = SkScalarHalf(ellipse.width()); SkScalar ellipseYRadius = SkScalarHalf(ellipse.height()); SkScalar xRadius = SkScalarAbs(viewMatrix[SkMatrix::kMScaleX]*ellipseXRadius + viewMatrix[SkMatrix::kMSkewY]*ellipseYRadius); SkScalar yRadius = SkScalarAbs(viewMatrix[SkMatrix::kMSkewX]*ellipseXRadius + viewMatrix[SkMatrix::kMScaleY]*ellipseYRadius); // do (potentially) anisotropic mapping of stroke SkVector scaledStroke; SkScalar strokeWidth = stroke.getWidth(); scaledStroke.fX = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMScaleX] + viewMatrix[SkMatrix::kMSkewY])); scaledStroke.fY = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMSkewX] + viewMatrix[SkMatrix::kMScaleY])); SkStrokeRec::Style style = stroke.getStyle(); bool isStrokeOnly = SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style; bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; SkScalar innerXRadius = 0; SkScalar innerYRadius = 0; if (hasStroke) { if (SkScalarNearlyZero(scaledStroke.length())) { scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf); } else { scaledStroke.scale(SK_ScalarHalf); } // we only handle thick strokes for near-circular ellipses if (scaledStroke.length() > SK_ScalarHalf && (SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) { return false; } // we don't handle it if curvature of the stroke is less than curvature of the ellipse if (scaledStroke.fX*(yRadius*yRadius) < (scaledStroke.fY*scaledStroke.fY)*xRadius || scaledStroke.fY*(xRadius*xRadius) < (scaledStroke.fX*scaledStroke.fX)*yRadius) { return false; } // this is legit only if scale & translation (which should be the case at the moment) if (isStrokeOnly) { innerXRadius = xRadius - scaledStroke.fX; innerYRadius = yRadius - scaledStroke.fY; } xRadius += scaledStroke.fX; yRadius += scaledStroke.fY; } SkMatrix invert; if (!viewMatrix.invert(&invert)) { return false; } SkAutoTUnref gp( EllipseEdgeEffect::Create(color, isStrokeOnly && innerXRadius > 0 && innerYRadius > 0, invert)); GrDrawTarget::AutoReleaseGeometry geo(target, 4, gp->getVertexStride(), 0); SkASSERT(gp->getVertexStride() == sizeof(EllipseVertex)); if (!geo.succeeded()) { SkDebugf("Failed to get space for vertices!\n"); return false; } EllipseVertex* verts = reinterpret_cast(geo.vertices()); // Compute the reciprocals of the radii here to save time in the shader SkScalar xRadRecip = SkScalarInvert(xRadius); SkScalar yRadRecip = SkScalarInvert(yRadius); SkScalar xInnerRadRecip = SkScalarInvert(innerXRadius); SkScalar yInnerRadRecip = SkScalarInvert(innerYRadius); // We've extended the outer x radius out half a pixel to antialias. // This will also expand the rect so all the pixels will be captured. // TODO: Consider if we should use sqrt(2)/2 instead xRadius += SK_ScalarHalf; yRadius += SK_ScalarHalf; SkRect bounds = SkRect::MakeLTRB( center.fX - xRadius, center.fY - yRadius, center.fX + xRadius, center.fY + yRadius ); verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); verts[0].fOffset = SkPoint::Make(-xRadius, -yRadius); verts[0].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); verts[0].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); verts[1].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); verts[1].fOffset = SkPoint::Make(-xRadius, yRadius); verts[1].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); verts[1].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); verts[2].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); verts[2].fOffset = SkPoint::Make(xRadius, yRadius); verts[2].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); verts[2].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); verts[3].fOffset = SkPoint::Make(xRadius, -yRadius); verts[3].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); verts[3].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); target->setIndexSourceToBuffer(fGpu->getQuadIndexBuffer()); target->drawIndexedInstances(drawState, gp, kTriangles_GrPrimitiveType, 1, 4, 6, &bounds); target->resetIndexSource(); return true; } bool GrOvalRenderer::drawDIEllipse(GrDrawTarget* target, GrDrawState* drawState, GrColor color, const SkMatrix& viewMatrix, bool useCoverageAA, const SkRect& ellipse, const SkStrokeRec& stroke) { SkPoint center = SkPoint::Make(ellipse.centerX(), ellipse.centerY()); SkScalar xRadius = SkScalarHalf(ellipse.width()); SkScalar yRadius = SkScalarHalf(ellipse.height()); SkStrokeRec::Style style = stroke.getStyle(); DIEllipseEdgeEffect::Mode mode = (SkStrokeRec::kStroke_Style == style) ? DIEllipseEdgeEffect::kStroke : (SkStrokeRec::kHairline_Style == style) ? DIEllipseEdgeEffect::kHairline : DIEllipseEdgeEffect::kFill; SkScalar innerXRadius = 0; SkScalar innerYRadius = 0; if (SkStrokeRec::kFill_Style != style && SkStrokeRec::kHairline_Style != style) { SkScalar strokeWidth = stroke.getWidth(); if (SkScalarNearlyZero(strokeWidth)) { strokeWidth = SK_ScalarHalf; } else { strokeWidth *= SK_ScalarHalf; } // we only handle thick strokes for near-circular ellipses if (strokeWidth > SK_ScalarHalf && (SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) { return false; } // we don't handle it if curvature of the stroke is less than curvature of the ellipse if (strokeWidth*(yRadius*yRadius) < (strokeWidth*strokeWidth)*xRadius || strokeWidth*(xRadius*xRadius) < (strokeWidth*strokeWidth)*yRadius) { return false; } // set inner radius (if needed) if (SkStrokeRec::kStroke_Style == style) { innerXRadius = xRadius - strokeWidth; innerYRadius = yRadius - strokeWidth; } xRadius += strokeWidth; yRadius += strokeWidth; } if (DIEllipseEdgeEffect::kStroke == mode) { mode = (innerXRadius > 0 && innerYRadius > 0) ? DIEllipseEdgeEffect::kStroke : DIEllipseEdgeEffect::kFill; } SkScalar innerRatioX = SkScalarDiv(xRadius, innerXRadius); SkScalar innerRatioY = SkScalarDiv(yRadius, innerYRadius); SkAutoTUnref gp(DIEllipseEdgeEffect::Create(color, viewMatrix, mode)); GrDrawTarget::AutoReleaseGeometry geo(target, 4, gp->getVertexStride(), 0); SkASSERT(gp->getVertexStride() == sizeof(DIEllipseVertex)); if (!geo.succeeded()) { SkDebugf("Failed to get space for vertices!\n"); return false; } DIEllipseVertex* verts = reinterpret_cast(geo.vertices()); // This expands the outer rect so that after CTM we end up with a half-pixel border SkScalar a = viewMatrix[SkMatrix::kMScaleX]; SkScalar b = viewMatrix[SkMatrix::kMSkewX]; SkScalar c = viewMatrix[SkMatrix::kMSkewY]; SkScalar d = viewMatrix[SkMatrix::kMScaleY]; SkScalar geoDx = SkScalarDiv(SK_ScalarHalf, SkScalarSqrt(a*a + c*c)); SkScalar geoDy = SkScalarDiv(SK_ScalarHalf, SkScalarSqrt(b*b + d*d)); // This adjusts the "radius" to include the half-pixel border SkScalar offsetDx = SkScalarDiv(geoDx, xRadius); SkScalar offsetDy = SkScalarDiv(geoDy, yRadius); SkRect bounds = SkRect::MakeLTRB( center.fX - xRadius - geoDx, center.fY - yRadius - geoDy, center.fX + xRadius + geoDx, center.fY + yRadius + geoDy ); verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); verts[0].fOuterOffset = SkPoint::Make(-1.0f - offsetDx, -1.0f - offsetDy); verts[0].fInnerOffset = SkPoint::Make(-innerRatioX - offsetDx, -innerRatioY - offsetDy); verts[1].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); verts[1].fOuterOffset = SkPoint::Make(-1.0f - offsetDx, 1.0f + offsetDy); verts[1].fInnerOffset = SkPoint::Make(-innerRatioX - offsetDx, innerRatioY + offsetDy); verts[2].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); verts[2].fOuterOffset = SkPoint::Make(1.0f + offsetDx, 1.0f + offsetDy); verts[2].fInnerOffset = SkPoint::Make(innerRatioX + offsetDx, innerRatioY + offsetDy); verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); verts[3].fOuterOffset = SkPoint::Make(1.0f + offsetDx, -1.0f - offsetDy); verts[3].fInnerOffset = SkPoint::Make(innerRatioX + offsetDx, -innerRatioY - offsetDy); target->setIndexSourceToBuffer(fGpu->getQuadIndexBuffer()); target->drawIndexedInstances(drawState, gp, kTriangles_GrPrimitiveType, 1, 4, 6, &bounds); target->resetIndexSource(); return true; } /////////////////////////////////////////////////////////////////////////////// static const uint16_t gRRectIndices[] = { // corners 0, 1, 5, 0, 5, 4, 2, 3, 7, 2, 7, 6, 8, 9, 13, 8, 13, 12, 10, 11, 15, 10, 15, 14, // edges 1, 2, 6, 1, 6, 5, 4, 5, 9, 4, 9, 8, 6, 7, 11, 6, 11, 10, 9, 10, 14, 9, 14, 13, // center // we place this at the end so that we can ignore these indices when rendering stroke-only 5, 6, 10, 5, 10, 9 }; static const int kIndicesPerStrokeRRect = SK_ARRAY_COUNT(gRRectIndices) - 6; static const int kIndicesPerRRect = SK_ARRAY_COUNT(gRRectIndices); static const int kVertsPerRRect = 16; static const int kNumRRectsInIndexBuffer = 256; GrIndexBuffer* GrOvalRenderer::rRectIndexBuffer(bool isStrokeOnly) { if (isStrokeOnly) { if (NULL == fStrokeRRectIndexBuffer) { fStrokeRRectIndexBuffer = fGpu->createInstancedIndexBuffer(gRRectIndices, kIndicesPerStrokeRRect, kNumRRectsInIndexBuffer, kVertsPerRRect); } return fStrokeRRectIndexBuffer; } else { if (NULL == fRRectIndexBuffer) { fRRectIndexBuffer = fGpu->createInstancedIndexBuffer(gRRectIndices, kIndicesPerRRect, kNumRRectsInIndexBuffer, kVertsPerRRect); } return fRRectIndexBuffer; } } bool GrOvalRenderer::drawDRRect(GrDrawTarget* target, GrDrawState* drawState, GrColor color, const SkMatrix& viewMatrix, bool useAA, const SkRRect& origOuter, const SkRRect& origInner) { bool applyAA = useAA && !drawState->getRenderTarget()->isMultisampled() && drawState->canUseFracCoveragePrimProc(color, *target->caps()); GrDrawState::AutoRestoreEffects are; if (!origInner.isEmpty()) { SkTCopyOnFirstWrite inner(origInner); if (!viewMatrix.isIdentity()) { if (!origInner.transform(viewMatrix, inner.writable())) { return false; } } GrPrimitiveEdgeType edgeType = applyAA ? kInverseFillAA_GrProcessorEdgeType : kInverseFillBW_GrProcessorEdgeType; // TODO this needs to be a geometry processor GrFragmentProcessor* fp = GrRRectEffect::Create(edgeType, *inner); if (NULL == fp) { return false; } are.set(drawState); drawState->addCoverageProcessor(fp)->unref(); } SkStrokeRec fillRec(SkStrokeRec::kFill_InitStyle); if (this->drawRRect(target, drawState, color, viewMatrix, useAA, origOuter, fillRec)) { return true; } SkASSERT(!origOuter.isEmpty()); SkTCopyOnFirstWrite outer(origOuter); if (!viewMatrix.isIdentity()) { if (!origOuter.transform(viewMatrix, outer.writable())) { return false; } } GrPrimitiveEdgeType edgeType = applyAA ? kFillAA_GrProcessorEdgeType : kFillBW_GrProcessorEdgeType; GrFragmentProcessor* effect = GrRRectEffect::Create(edgeType, *outer); if (NULL == effect) { return false; } if (!are.isSet()) { are.set(drawState); } SkMatrix invert; if (!viewMatrix.invert(&invert)) { return false; } drawState->addCoverageProcessor(effect)->unref(); SkRect bounds = outer->getBounds(); if (applyAA) { bounds.outset(SK_ScalarHalf, SK_ScalarHalf); } target->drawRect(drawState, color, SkMatrix::I(), bounds, NULL, &invert); return true; } bool GrOvalRenderer::drawRRect(GrDrawTarget* target, GrDrawState* drawState, GrColor color, const SkMatrix& viewMatrix, bool useAA, const SkRRect& rrect, const SkStrokeRec& stroke) { if (rrect.isOval()) { return this->drawOval(target, drawState, color, viewMatrix, useAA, rrect.getBounds(), stroke); } bool useCoverageAA = useAA && !drawState->getRenderTarget()->isMultisampled() && drawState->canUseFracCoveragePrimProc(color, *target->caps()); // only anti-aliased rrects for now if (!useCoverageAA) { return false; } if (!viewMatrix.rectStaysRect() || !rrect.isSimple()) { return false; } // do any matrix crunching before we reset the draw state for device coords const SkRect& rrectBounds = rrect.getBounds(); SkRect bounds; viewMatrix.mapRect(&bounds, rrectBounds); SkVector radii = rrect.getSimpleRadii(); SkScalar xRadius = SkScalarAbs(viewMatrix[SkMatrix::kMScaleX]*radii.fX + viewMatrix[SkMatrix::kMSkewY]*radii.fY); SkScalar yRadius = SkScalarAbs(viewMatrix[SkMatrix::kMSkewX]*radii.fX + viewMatrix[SkMatrix::kMScaleY]*radii.fY); SkStrokeRec::Style style = stroke.getStyle(); // do (potentially) anisotropic mapping of stroke SkVector scaledStroke; SkScalar strokeWidth = stroke.getWidth(); bool isStrokeOnly = SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style; bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; if (hasStroke) { if (SkStrokeRec::kHairline_Style == style) { scaledStroke.set(1, 1); } else { scaledStroke.fX = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMScaleX] + viewMatrix[SkMatrix::kMSkewY])); scaledStroke.fY = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMSkewX] + viewMatrix[SkMatrix::kMScaleY])); } // if half of strokewidth is greater than radius, we don't handle that right now if (SK_ScalarHalf*scaledStroke.fX > xRadius || SK_ScalarHalf*scaledStroke.fY > yRadius) { return false; } } // The way the effect interpolates the offset-to-ellipse/circle-center attribute only works on // the interior of the rrect if the radii are >= 0.5. Otherwise, the inner rect of the nine- // patch will have fractional coverage. This only matters when the interior is actually filled. // We could consider falling back to rect rendering here, since a tiny radius is // indistinguishable from a square corner. if (!isStrokeOnly && (SK_ScalarHalf > xRadius || SK_ScalarHalf > yRadius)) { return false; } // reset to device coordinates SkMatrix invert; if (!viewMatrix.invert(&invert)) { SkDebugf("Failed to invert\n"); return false; } GrIndexBuffer* indexBuffer = this->rRectIndexBuffer(isStrokeOnly); if (NULL == indexBuffer) { SkDebugf("Failed to create index buffer!\n"); return false; } // if the corners are circles, use the circle renderer if ((!hasStroke || scaledStroke.fX == scaledStroke.fY) && xRadius == yRadius) { SkScalar innerRadius = 0.0f; SkScalar outerRadius = xRadius; SkScalar halfWidth = 0; if (hasStroke) { if (SkScalarNearlyZero(scaledStroke.fX)) { halfWidth = SK_ScalarHalf; } else { halfWidth = SkScalarHalf(scaledStroke.fX); } if (isStrokeOnly) { innerRadius = xRadius - halfWidth; } outerRadius += halfWidth; bounds.outset(halfWidth, halfWidth); } isStrokeOnly = (isStrokeOnly && innerRadius >= 0); SkAutoTUnref effect(CircleEdgeEffect::Create(color, isStrokeOnly, invert)); GrDrawTarget::AutoReleaseGeometry geo(target, 16, effect->getVertexStride(), 0); SkASSERT(effect->getVertexStride() == sizeof(CircleVertex)); if (!geo.succeeded()) { SkDebugf("Failed to get space for vertices!\n"); return false; } CircleVertex* verts = reinterpret_cast(geo.vertices()); // The radii are outset for two reasons. First, it allows the shader to simply perform // simpler computation because the computed alpha is zero, rather than 50%, at the radius. // Second, the outer radius is used to compute the verts of the bounding box that is // rendered and the outset ensures the box will cover all partially covered by the rrect // corners. outerRadius += SK_ScalarHalf; innerRadius -= SK_ScalarHalf; // Expand the rect so all the pixels will be captured. bounds.outset(SK_ScalarHalf, SK_ScalarHalf); SkScalar yCoords[4] = { bounds.fTop, bounds.fTop + outerRadius, bounds.fBottom - outerRadius, bounds.fBottom }; SkScalar yOuterRadii[4] = {-1, 0, 0, 1 }; // The inner radius in the vertex data must be specified in normalized space. innerRadius = innerRadius / outerRadius; for (int i = 0; i < 4; ++i) { verts->fPos = SkPoint::Make(bounds.fLeft, yCoords[i]); verts->fOffset = SkPoint::Make(-1, yOuterRadii[i]); verts->fOuterRadius = outerRadius; verts->fInnerRadius = innerRadius; verts++; verts->fPos = SkPoint::Make(bounds.fLeft + outerRadius, yCoords[i]); verts->fOffset = SkPoint::Make(0, yOuterRadii[i]); verts->fOuterRadius = outerRadius; verts->fInnerRadius = innerRadius; verts++; verts->fPos = SkPoint::Make(bounds.fRight - outerRadius, yCoords[i]); verts->fOffset = SkPoint::Make(0, yOuterRadii[i]); verts->fOuterRadius = outerRadius; verts->fInnerRadius = innerRadius; verts++; verts->fPos = SkPoint::Make(bounds.fRight, yCoords[i]); verts->fOffset = SkPoint::Make(1, yOuterRadii[i]); verts->fOuterRadius = outerRadius; verts->fInnerRadius = innerRadius; verts++; } // drop out the middle quad if we're stroked int indexCnt = isStrokeOnly ? SK_ARRAY_COUNT(gRRectIndices) - 6 : SK_ARRAY_COUNT(gRRectIndices); target->setIndexSourceToBuffer(indexBuffer); target->drawIndexedInstances(drawState, effect, kTriangles_GrPrimitiveType, 1, 16, indexCnt, &bounds); // otherwise we use the ellipse renderer } else { SkScalar innerXRadius = 0.0f; SkScalar innerYRadius = 0.0f; if (hasStroke) { if (SkScalarNearlyZero(scaledStroke.length())) { scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf); } else { scaledStroke.scale(SK_ScalarHalf); } // we only handle thick strokes for near-circular ellipses if (scaledStroke.length() > SK_ScalarHalf && (SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) { return false; } // we don't handle it if curvature of the stroke is less than curvature of the ellipse if (scaledStroke.fX*(yRadius*yRadius) < (scaledStroke.fY*scaledStroke.fY)*xRadius || scaledStroke.fY*(xRadius*xRadius) < (scaledStroke.fX*scaledStroke.fX)*yRadius) { return false; } // this is legit only if scale & translation (which should be the case at the moment) if (isStrokeOnly) { innerXRadius = xRadius - scaledStroke.fX; innerYRadius = yRadius - scaledStroke.fY; } xRadius += scaledStroke.fX; yRadius += scaledStroke.fY; bounds.outset(scaledStroke.fX, scaledStroke.fY); } isStrokeOnly = (isStrokeOnly && innerXRadius >= 0 && innerYRadius >= 0); SkAutoTUnref effect(EllipseEdgeEffect::Create(color, isStrokeOnly, invert)); GrDrawTarget::AutoReleaseGeometry geo(target, 16, effect->getVertexStride(), 0); SkASSERT(effect->getVertexStride() == sizeof(EllipseVertex)); if (!geo.succeeded()) { SkDebugf("Failed to get space for vertices!\n"); return false; } EllipseVertex* verts = reinterpret_cast(geo.vertices()); // Compute the reciprocals of the radii here to save time in the shader SkScalar xRadRecip = SkScalarInvert(xRadius); SkScalar yRadRecip = SkScalarInvert(yRadius); SkScalar xInnerRadRecip = SkScalarInvert(innerXRadius); SkScalar yInnerRadRecip = SkScalarInvert(innerYRadius); // Extend the radii out half a pixel to antialias. SkScalar xOuterRadius = xRadius + SK_ScalarHalf; SkScalar yOuterRadius = yRadius + SK_ScalarHalf; // Expand the rect so all the pixels will be captured. bounds.outset(SK_ScalarHalf, SK_ScalarHalf); SkScalar yCoords[4] = { bounds.fTop, bounds.fTop + yOuterRadius, bounds.fBottom - yOuterRadius, bounds.fBottom }; SkScalar yOuterOffsets[4] = { yOuterRadius, SK_ScalarNearlyZero, // we're using inversesqrt() in the shader, so can't be exactly 0 SK_ScalarNearlyZero, yOuterRadius }; for (int i = 0; i < 4; ++i) { verts->fPos = SkPoint::Make(bounds.fLeft, yCoords[i]); verts->fOffset = SkPoint::Make(xOuterRadius, yOuterOffsets[i]); verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); verts++; verts->fPos = SkPoint::Make(bounds.fLeft + xOuterRadius, yCoords[i]); verts->fOffset = SkPoint::Make(SK_ScalarNearlyZero, yOuterOffsets[i]); verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); verts++; verts->fPos = SkPoint::Make(bounds.fRight - xOuterRadius, yCoords[i]); verts->fOffset = SkPoint::Make(SK_ScalarNearlyZero, yOuterOffsets[i]); verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); verts++; verts->fPos = SkPoint::Make(bounds.fRight, yCoords[i]); verts->fOffset = SkPoint::Make(xOuterRadius, yOuterOffsets[i]); verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); verts++; } // drop out the middle quad if we're stroked int indexCnt = isStrokeOnly ? SK_ARRAY_COUNT(gRRectIndices) - 6 : SK_ARRAY_COUNT(gRRectIndices); target->setIndexSourceToBuffer(indexBuffer); target->drawIndexedInstances(drawState, effect, kTriangles_GrPrimitiveType, 1, 16, indexCnt, &bounds); } target->resetIndexSource(); return true; }