/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrGpu_DEFINED #define GrGpu_DEFINED #include "GrDrawTarget.h" #include "GrClipMaskManager.h" #include "GrPathRendering.h" #include "SkPath.h" class GrContext; class GrIndexBufferAllocPool; class GrPath; class GrPathRange; class GrPathRenderer; class GrPathRendererChain; class GrStencilBuffer; class GrVertexBufferAllocPool; class GrGpu : public GrDrawTarget { public: /** * Additional blend coefficients for dual source blending, not exposed * through GrPaint/GrContext. */ enum ExtendedBlendCoeffs { // source 2 refers to second output color when // using dual source blending. kS2C_GrBlendCoeff = kPublicGrBlendCoeffCount, kIS2C_GrBlendCoeff, kS2A_GrBlendCoeff, kIS2A_GrBlendCoeff, kTotalGrBlendCoeffCount }; /** * Create an instance of GrGpu that matches the specified backend. If the requested backend is * not supported (at compile-time or run-time) this returns NULL. The context will not be * fully constructed and should not be used by GrGpu until after this function returns. */ static GrGpu* Create(GrBackend, GrBackendContext, GrContext* context); //////////////////////////////////////////////////////////////////////////// GrGpu(GrContext* context); virtual ~GrGpu(); GrContext* getContext() { return this->INHERITED::getContext(); } const GrContext* getContext() const { return this->INHERITED::getContext(); } GrPathRendering* pathRendering() { return fPathRendering.get(); } // Called by GrContext when the underlying backend context has been destroyed. // GrGpu should use this to ensure that no backend API calls will be made from // here onward, including in its destructor. Subclasses should call // INHERITED::contextAbandoned() if they override this. virtual void contextAbandoned(); /** * The GrGpu object normally assumes that no outsider is setting state * within the underlying 3D API's context/device/whatever. This call informs * the GrGpu that the state was modified and it shouldn't make assumptions * about the state. */ void markContextDirty(uint32_t state = kAll_GrBackendState) { fResetBits |= state; } void unimpl(const char[]); /** * Creates a texture object. If desc width or height is not a power of * two but underlying API requires a power of two texture then srcData * will be embedded in a power of two texture. The extra width and height * is filled as though srcData were rendered clamped into the texture. * The exception is when using compressed data formats. In this case, the * desc width and height must be a multiple of the compressed format block * size otherwise this function returns NULL. Similarly, if the underlying * API requires a power of two texture and the source width and height are not * a power of two, then this function returns NULL. * * If kRenderTarget_TextureFlag is specified the GrRenderTarget is * accessible via GrTexture::asRenderTarget(). The texture will hold a ref * on the render target until the texture is destroyed. Compressed textures * cannot have the kRenderTarget_TextureFlag set. * * @param desc describes the texture to be created. * @param srcData texel data to load texture. Begins with full-size * palette data for paletted textures. For compressed * formats it contains the compressed pixel data. Otherwise, * it contains width*height texels. If NULL texture data * is uninitialized. * @param rowBytes the number of bytes between consecutive rows. Zero * means rows are tightly packed. This field is ignored * for compressed formats. * * @return The texture object if successful, otherwise NULL. */ GrTexture* createTexture(const GrTextureDesc& desc, const void* srcData, size_t rowBytes); /** * Implements GrContext::wrapBackendTexture */ GrTexture* wrapBackendTexture(const GrBackendTextureDesc&); /** * Implements GrContext::wrapBackendTexture */ GrRenderTarget* wrapBackendRenderTarget(const GrBackendRenderTargetDesc&); /** * Creates a vertex buffer. * * @param size size in bytes of the vertex buffer * @param dynamic hints whether the data will be frequently changed * by either GrVertexBuffer::map() or * GrVertexBuffer::updateData(). * * @return The vertex buffer if successful, otherwise NULL. */ GrVertexBuffer* createVertexBuffer(size_t size, bool dynamic); /** * Creates an index buffer. * * @param size size in bytes of the index buffer * @param dynamic hints whether the data will be frequently changed * by either GrIndexBuffer::map() or * GrIndexBuffer::updateData(). * * @return The index buffer if successful, otherwise NULL. */ GrIndexBuffer* createIndexBuffer(size_t size, bool dynamic); /** * Creates an index buffer for instance drawing with a specific pattern. * * @param pattern the pattern to repeat * @param patternSize size in bytes of the pattern * @param reps number of times to repeat the pattern * @param vertCount number of vertices the pattern references * @param dynamic hints whether the data will be frequently changed * by either GrIndexBuffer::map() or * GrIndexBuffer::updateData(). * * @return The index buffer if successful, otherwise NULL. */ GrIndexBuffer* createInstancedIndexBuffer(const uint16_t* pattern, int patternSize, int reps, int vertCount, bool isDynamic = false); /** * Returns an index buffer that can be used to render quads. * Six indices per quad: 0, 1, 2, 0, 2, 3, etc. * The max number of quads can be queried using GrIndexBuffer::maxQuads(). * Draw with kTriangles_GrPrimitiveType * @ return the quad index buffer */ const GrIndexBuffer* getQuadIndexBuffer() const; /** * Resolves MSAA. */ void resolveRenderTarget(GrRenderTarget* target); /** * Gets a preferred 8888 config to use for writing/reading pixel data to/from a surface with * config surfaceConfig. The returned config must have at least as many bits per channel as the * readConfig or writeConfig param. */ virtual GrPixelConfig preferredReadPixelsConfig(GrPixelConfig readConfig, GrPixelConfig surfaceConfig) const { return readConfig; } virtual GrPixelConfig preferredWritePixelsConfig(GrPixelConfig writeConfig, GrPixelConfig surfaceConfig) const { return writeConfig; } /** * Called before uploading writing pixels to a GrTexture when the src pixel config doesn't * match the texture's config. */ virtual bool canWriteTexturePixels(const GrTexture*, GrPixelConfig srcConfig) const = 0; /** * OpenGL's readPixels returns the result bottom-to-top while the skia * API is top-to-bottom. Thus we have to do a y-axis flip. The obvious * solution is to have the subclass do the flip using either the CPU or GPU. * However, the caller (GrContext) may have transformations to apply and can * simply fold in the y-flip for free. On the other hand, the subclass may * be able to do it for free itself. For example, the subclass may have to * do memcpys to handle rowBytes that aren't tight. It could do the y-flip * concurrently. * * This function returns true if a y-flip is required to put the pixels in * top-to-bottom order and the subclass cannot do it for free. * * See read pixels for the params * @return true if calling readPixels with the same set of params will * produce bottom-to-top data */ virtual bool readPixelsWillPayForYFlip(GrRenderTarget* renderTarget, int left, int top, int width, int height, GrPixelConfig config, size_t rowBytes) const = 0; /** * This should return true if reading a NxM rectangle of pixels from a * render target is faster if the target has dimensons N and M and the read * rectangle has its top-left at 0,0. */ virtual bool fullReadPixelsIsFasterThanPartial() const { return false; }; /** * Reads a rectangle of pixels from a render target. * * @param renderTarget the render target to read from. NULL means the * current render target. * @param left left edge of the rectangle to read (inclusive) * @param top top edge of the rectangle to read (inclusive) * @param width width of rectangle to read in pixels. * @param height height of rectangle to read in pixels. * @param config the pixel config of the destination buffer * @param buffer memory to read the rectangle into. * @param rowBytes the number of bytes between consecutive rows. Zero * means rows are tightly packed. * @param invertY buffer should be populated bottom-to-top as opposed * to top-to-bottom (skia's usual order) * * @return true if the read succeeded, false if not. The read can fail * because of a unsupported pixel config or because no render * target is currently set. */ bool readPixels(GrRenderTarget* renderTarget, int left, int top, int width, int height, GrPixelConfig config, void* buffer, size_t rowBytes); /** * Updates the pixels in a rectangle of a texture. * * @param left left edge of the rectangle to write (inclusive) * @param top top edge of the rectangle to write (inclusive) * @param width width of rectangle to write in pixels. * @param height height of rectangle to write in pixels. * @param config the pixel config of the source buffer * @param buffer memory to read pixels from * @param rowBytes number of bytes between consecutive rows. Zero * means rows are tightly packed. */ bool writeTexturePixels(GrTexture* texture, int left, int top, int width, int height, GrPixelConfig config, const void* buffer, size_t rowBytes); // GrDrawTarget overrides virtual void clear(const SkIRect* rect, GrColor color, bool canIgnoreRect, GrRenderTarget* renderTarget = NULL) SK_OVERRIDE; virtual void purgeResources() SK_OVERRIDE { // The clip mask manager can rebuild all its clip masks so just // get rid of them all. fClipMaskManager.purgeResources(); } // After the client interacts directly with the 3D context state the GrGpu // must resync its internal state and assumptions about 3D context state. // Each time this occurs the GrGpu bumps a timestamp. // state of the 3D context // At 10 resets / frame and 60fps a 64bit timestamp will overflow in about // a billion years. typedef uint64_t ResetTimestamp; // This timestamp is always older than the current timestamp static const ResetTimestamp kExpiredTimestamp = 0; // Returns a timestamp based on the number of times the context was reset. // This timestamp can be used to lazily detect when cached 3D context state // is dirty. ResetTimestamp getResetTimestamp() const { return fResetTimestamp; } // GrGpu subclass sets clip bit in the stencil buffer. The subclass is // free to clear the remaining bits to zero if masked clears are more // expensive than clearing all bits. virtual void clearStencilClip(GrRenderTarget*, const SkIRect& rect, bool insideClip) = 0; enum PrivateDrawStateStateBits { kFirstBit = (GrDrawState::kLastPublicStateBit << 1), kModifyStencilClip_StateBit = kFirstBit, // allows draws to modify // stencil bits used for // clipping. }; void getPathStencilSettingsForFillType(SkPath::FillType fill, GrStencilSettings* outStencilSettings); enum DrawType { kDrawPoints_DrawType, kDrawLines_DrawType, kDrawTriangles_DrawType, kStencilPath_DrawType, kDrawPath_DrawType, kDrawPaths_DrawType, }; static bool IsPathRenderingDrawType(DrawType type) { return kDrawPath_DrawType == type || kDrawPaths_DrawType == type; } GrContext::GPUStats* gpuStats() { return &fGPUStats; } protected: DrawType PrimTypeToDrawType(GrPrimitiveType type) { switch (type) { case kTriangles_GrPrimitiveType: case kTriangleStrip_GrPrimitiveType: case kTriangleFan_GrPrimitiveType: return kDrawTriangles_DrawType; case kPoints_GrPrimitiveType: return kDrawPoints_DrawType; case kLines_GrPrimitiveType: case kLineStrip_GrPrimitiveType: return kDrawLines_DrawType; default: SkFAIL("Unexpected primitive type"); return kDrawTriangles_DrawType; } } // prepares clip flushes gpu state before a draw bool setupClipAndFlushState(DrawType, const GrDeviceCoordTexture* dstCopy, const SkRect* devBounds, GrDrawState::AutoRestoreEffects*); // Functions used to map clip-respecting stencil tests into normal // stencil funcs supported by GPUs. static GrStencilFunc ConvertStencilFunc(bool stencilInClip, GrStencilFunc func); static void ConvertStencilFuncAndMask(GrStencilFunc func, bool clipInStencil, unsigned int clipBit, unsigned int userBits, unsigned int* ref, unsigned int* mask); GrClipMaskManager fClipMaskManager; GrContext::GPUStats fGPUStats; struct GeometryPoolState { const GrVertexBuffer* fPoolVertexBuffer; int fPoolStartVertex; const GrIndexBuffer* fPoolIndexBuffer; int fPoolStartIndex; }; const GeometryPoolState& getGeomPoolState() { return fGeomPoolStateStack.back(); } // Helpers for setting up geometry state void finalizeReservedVertices(); void finalizeReservedIndices(); SkAutoTDelete fPathRendering; private: // GrDrawTarget overrides virtual bool onReserveVertexSpace(size_t vertexSize, int vertexCount, void** vertices) SK_OVERRIDE; virtual bool onReserveIndexSpace(int indexCount, void** indices) SK_OVERRIDE; virtual void releaseReservedVertexSpace() SK_OVERRIDE; virtual void releaseReservedIndexSpace() SK_OVERRIDE; virtual void onSetVertexSourceToArray(const void* vertexArray, int vertexCount) SK_OVERRIDE; virtual void onSetIndexSourceToArray(const void* indexArray, int indexCount) SK_OVERRIDE; virtual void releaseVertexArray() SK_OVERRIDE; virtual void releaseIndexArray() SK_OVERRIDE; virtual void geometrySourceWillPush() SK_OVERRIDE; virtual void geometrySourceWillPop(const GeometrySrcState& restoredState) SK_OVERRIDE; // called when the 3D context state is unknown. Subclass should emit any // assumed 3D context state and dirty any state cache. virtual void onResetContext(uint32_t resetBits) = 0; // overridden by backend-specific derived class to create objects. virtual GrTexture* onCreateTexture(const GrTextureDesc& desc, const void* srcData, size_t rowBytes) = 0; virtual GrTexture* onCreateCompressedTexture(const GrTextureDesc& desc, const void* srcData) = 0; virtual GrTexture* onWrapBackendTexture(const GrBackendTextureDesc&) = 0; virtual GrRenderTarget* onWrapBackendRenderTarget(const GrBackendRenderTargetDesc&) = 0; virtual GrVertexBuffer* onCreateVertexBuffer(size_t size, bool dynamic) = 0; virtual GrIndexBuffer* onCreateIndexBuffer(size_t size, bool dynamic) = 0; // overridden by backend-specific derived class to perform the clear and // clearRect. NULL rect means clear whole target. If canIgnoreRect is // true, it is okay to perform a full clear instead of a partial clear virtual void onClear(GrRenderTarget*, const SkIRect* rect, GrColor color, bool canIgnoreRect) = 0; // overridden by backend-specific derived class to perform the draw call. virtual void onGpuDraw(const DrawInfo&) = 0; // overridden by backend-specific derived class to perform the read pixels. virtual bool onReadPixels(GrRenderTarget* target, int left, int top, int width, int height, GrPixelConfig, void* buffer, size_t rowBytes) = 0; // overridden by backend-specific derived class to perform the texture update virtual bool onWriteTexturePixels(GrTexture* texture, int left, int top, int width, int height, GrPixelConfig config, const void* buffer, size_t rowBytes) = 0; // overridden by backend-specific derived class to perform the resolve virtual void onResolveRenderTarget(GrRenderTarget* target) = 0; // width and height may be larger than rt (if underlying API allows it). // Should attach the SB to the RT. Returns false if compatible sb could // not be created. virtual bool createStencilBufferForRenderTarget(GrRenderTarget*, int width, int height) = 0; // attaches an existing SB to an existing RT. virtual bool attachStencilBufferToRenderTarget(GrStencilBuffer*, GrRenderTarget*) = 0; // The GrGpu typically records the clients requested state and then flushes // deltas from previous state at draw time. This function does the // backend-specific flush of the state. // returns false if current state is unsupported. virtual bool flushGraphicsState(DrawType, const ScissorState&, const GrDeviceCoordTexture* dstCopy) = 0; // clears target's entire stencil buffer to 0 virtual void clearStencil(GrRenderTarget* target) = 0; // Given a rt, find or create a stencil buffer and attach it bool attachStencilBufferToRenderTarget(GrRenderTarget* target); // GrDrawTarget overrides virtual void onDraw(const DrawInfo&) SK_OVERRIDE; virtual void onStencilPath(const GrPath*, SkPath::FillType) SK_OVERRIDE; virtual void onDrawPath(const GrPath*, SkPath::FillType, const GrDeviceCoordTexture* dstCopy) SK_OVERRIDE; virtual void onDrawPaths(const GrPathRange*, const uint32_t indices[], int count, const float transforms[], PathTransformType, SkPath::FillType, const GrDeviceCoordTexture*) SK_OVERRIDE; // readies the pools to provide vertex/index data. void prepareVertexPool(); void prepareIndexPool(); void resetContext() { // We call this because the client may have messed with the // stencil buffer. Perhaps we should detect whether it is a // internally created stencil buffer and if so skip the invalidate. fClipMaskManager.invalidateStencilMask(); this->onResetContext(fResetBits); fResetBits = 0; ++fResetTimestamp; } void handleDirtyContext() { if (fResetBits) { this->resetContext(); } } enum { kPreallocGeomPoolStateStackCnt = 4, }; SkSTArray fGeomPoolStateStack; ResetTimestamp fResetTimestamp; uint32_t fResetBits; GrVertexBufferAllocPool* fVertexPool; GrIndexBufferAllocPool* fIndexPool; // counts number of uses of vertex/index pool in the geometry stack int fVertexPoolUseCnt; int fIndexPoolUseCnt; // these are mutable so they can be created on-demand mutable GrIndexBuffer* fQuadIndexBuffer; typedef GrDrawTarget INHERITED; }; #endif