/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrGeometryProcessor_DEFINED #define GrGeometryProcessor_DEFINED #include "GrColor.h" #include "GrGeometryData.h" #include "GrProcessor.h" #include "GrShaderVar.h" /* * The GrPrimitiveProcessor represents some kind of geometric primitive. This includes the shape * of the primitive and the inherent color of the primitive. The GrPrimitiveProcessor is * responsible for providing a color and coverage input into the Ganesh rendering pipeline. Through * optimization, Ganesh may decide a different color, no color, and / or no coverage are required * from the GrPrimitiveProcessor, so the GrPrimitiveProcessor must be able to support this * functionality. We also use the GrPrimitiveProcessor to make batching decisions. * * There are two feedback loops between the GrFragmentProcessors, the GrXferProcessor, and the * GrPrimitiveProcessor. These loops run on the CPU and compute any invariant components which * might be useful for correctness / optimization decisions. The GrPrimitiveProcessor seeds these * loops, one with initial color and one with initial coverage, in its * onComputeInvariantColor / Coverage calls. These seed values are processed by the subsequent * stages of the rendering pipeline and the output is then fed back into the GrPrimitiveProcessor in * the initBatchTracker call, where the GrPrimitiveProcessor can then initialize the GrBatchTracker * struct with the appropriate values. * * We are evolving this system to move towards generating geometric meshes and their associated * vertex data after we have batched and reordered draws. This system, known as 'deferred geometry' * will allow the GrPrimitiveProcessor much greater control over how data is transmitted to shaders. * * In a deferred geometry world, the GrPrimitiveProcessor can always 'batch' To do this, each * primitive type is associated with one GrPrimitiveProcessor, who has complete control of how * it draws. Each primitive draw will bundle all required data to perform the draw, and these * bundles of data will be owned by an instance of the associated GrPrimitiveProcessor. Bundles * can be updated alongside the GrBatchTracker struct itself, ultimately allowing the * GrPrimitiveProcessor complete control of how it gets data into the fragment shader as long as * it emits the appropriate color, or none at all, as directed. */ /* * A struct for tracking batching decisions. While this lives on GrOptState, it is managed * entirely by the derived classes of the GP. */ class GrBatchTracker { public: template const T& cast() const { SkASSERT(sizeof(T) <= kMaxSize); return *reinterpret_cast(fData.get()); } template T* cast() { SkASSERT(sizeof(T) <= kMaxSize); return reinterpret_cast(fData.get()); } static const size_t kMaxSize = 32; private: SkAlignedSStorage fData; }; class GrGLCaps; class GrGLPrimitiveProcessor; class GrOptDrawState; struct GrInitInvariantOutput; /* * This enum is shared by GrPrimitiveProcessors and GrGLPrimitiveProcessors to coordinate shaders * with vertex attributes / uniforms. */ enum GrGPInput { kAllOnes_GrGPInput, kAttribute_GrGPInput, kUniform_GrGPInput, kIgnored_GrGPInput, }; /* * GrPrimitiveProcessor defines an interface which all subclasses must implement. All * GrPrimitiveProcessors must proivide seed color and coverage for the Ganesh color / coverage * pipelines, and they must provide some notion of equality */ class GrPrimitiveProcessor : public GrProcessor { public: // TODO let the PrimProc itself set this in its setData call, this should really live on the // bundle of primitive data const SkMatrix& viewMatrix() const { return fViewMatrix; } const SkMatrix& localMatrix() const { return fLocalMatrix; } /* * This struct allows the optstate to communicate requirements to the GrPrimitiveProcessor. */ struct InitBT { bool fColorIgnored; bool fCoverageIgnored; GrColor fOverrideColor; bool fUsesLocalCoords; }; virtual void initBatchTracker(GrBatchTracker*, const InitBT&) const = 0; virtual bool canMakeEqual(const GrBatchTracker& mine, const GrPrimitiveProcessor& that, const GrBatchTracker& theirs) const = 0; virtual void getInvariantOutputColor(GrInitInvariantOutput* out) const = 0; virtual void getInvariantOutputCoverage(GrInitInvariantOutput* out) const = 0; // Only the GrGeometryProcessor subclass actually has a geo shader or vertex attributes, but // we put these calls on the base class to prevent having to cast virtual bool willUseGeoShader() const = 0; /* * This is a safeguard to prevent GrPrimitiveProcessor's from going beyond platform specific * attribute limits. This number can almost certainly be raised if required. */ static const int kMaxVertexAttribs = 6; struct Attribute { Attribute() : fName(NULL) , fType(kFloat_GrVertexAttribType) , fOffset(0) {} Attribute(const char* name, GrVertexAttribType type) : fName(name) , fType(type) , fOffset(SkAlign4(GrVertexAttribTypeSize(type))) {} const char* fName; GrVertexAttribType fType; size_t fOffset; }; int numAttribs() const { return fNumAttribs; } const Attribute& getAttrib(int index) const { SkASSERT(index < fNumAttribs); return fAttribs[index]; } // Returns the vertex stride of the GP. A common use case is to request geometry from a // drawtarget based off of the stride, and to populate this memory using an implicit array of // structs. In this case, it is best to assert the vertexstride == sizeof(VertexStruct). size_t getVertexStride() const { return fVertexStride; } /** * Gets a transformKey from an array of coord transforms */ uint32_t getTransformKey(const SkTArray&) const; /** * Sets a unique key on the GrProcessorKeyBuilder that is directly associated with this geometry * processor's GL backend implementation. */ virtual void getGLProcessorKey(const GrBatchTracker& bt, const GrGLCaps& caps, GrProcessorKeyBuilder* b) const = 0; /** Returns a new instance of the appropriate *GL* implementation class for the given GrProcessor; caller is responsible for deleting the object. */ virtual GrGLPrimitiveProcessor* createGLInstance(const GrBatchTracker& bt, const GrGLCaps& caps) const = 0; protected: GrPrimitiveProcessor(const SkMatrix& viewMatrix, const SkMatrix& localMatrix) : fNumAttribs(0) , fVertexStride(0) , fViewMatrix(viewMatrix) , fLocalMatrix(localMatrix) {} /* * CanCombineOutput will return true if two draws are 'batchable' from a color perspective. * TODO remove this when GPs can upgrade to attribute color */ static bool CanCombineOutput(GrGPInput left, GrColor lColor, GrGPInput right, GrColor rColor) { if (left != right) { return false; } if (kUniform_GrGPInput == left && lColor != rColor) { return false; } return true; } static bool CanCombineLocalMatrices(const GrPrimitiveProcessor& left, bool leftUsesLocalCoords, const GrPrimitiveProcessor& right, bool rightUsesLocalCoords) { if (leftUsesLocalCoords != rightUsesLocalCoords) { return false; } if (leftUsesLocalCoords && !left.localMatrix().cheapEqualTo(right.localMatrix())) { return false; } return true; } Attribute fAttribs[kMaxVertexAttribs]; int fNumAttribs; size_t fVertexStride; private: virtual bool hasExplicitLocalCoords() const = 0; const SkMatrix fViewMatrix; SkMatrix fLocalMatrix; typedef GrProcessor INHERITED; }; /** * A GrGeometryProcessor is a flexible method for rendering a primitive. The GrGeometryProcessor * has complete control over vertex attributes and uniforms(aside from the render target) but it * must obey the same contract as any GrPrimitiveProcessor, specifically it must emit a color and * coverage into the fragment shader. Where this color and coverage come from is completely the * responsibility of the GrGeometryProcessor. */ class GrGeometryProcessor : public GrPrimitiveProcessor { public: // TODO the Hint can be handled in a much more clean way when we have deferred geometry or // atleast bundles GrGeometryProcessor(GrColor color, const SkMatrix& viewMatrix = SkMatrix::I(), const SkMatrix& localMatrix = SkMatrix::I(), bool opaqueVertexColors = false) : INHERITED(viewMatrix, localMatrix) , fColor(color) , fOpaqueVertexColors(opaqueVertexColors) , fWillUseGeoShader(false) , fHasVertexColor(false) , fHasLocalCoords(false) {} bool willUseGeoShader() const { return fWillUseGeoShader; } /* * In an ideal world, two GrGeometryProcessors with the same class id and texture accesses * would ALWAYS be able to batch together. If two GrGeometryProcesosrs are the same then we * will only keep one of them. The remaining GrGeometryProcessor then updates its * GrBatchTracker to incorporate the draw information from the GrGeometryProcessor we discard. * Any bundles associated with the discarded GrGeometryProcessor will be attached to the * remaining GrGeometryProcessor. */ bool canMakeEqual(const GrBatchTracker& mine, const GrPrimitiveProcessor& that, const GrBatchTracker& theirs) const SK_OVERRIDE { if (this->classID() != that.classID() || !this->hasSameTextureAccesses(that)) { return false; } // TODO let the GPs decide this if (!this->viewMatrix().cheapEqualTo(that.viewMatrix())) { return false; } // TODO remove the hint const GrGeometryProcessor& other = that.cast(); if (fHasVertexColor && fOpaqueVertexColors != other.fOpaqueVertexColors) { return false; } // TODO this equality test should really be broken up, some of this can live on the batch // tracker test and some of this should be in bundles if (!this->onIsEqual(other)) { return false; } return this->onCanMakeEqual(mine, other, theirs); } // TODO we can remove color from the GrGeometryProcessor base class once we have bundles of // primitive data GrColor color() const { return fColor; } // TODO this is a total hack until the gp can do deferred geometry bool hasVertexColor() const { return fHasVertexColor; } void getInvariantOutputColor(GrInitInvariantOutput* out) const SK_OVERRIDE; void getInvariantOutputCoverage(GrInitInvariantOutput* out) const SK_OVERRIDE; protected: /* * An optional simple helper function to determine by what means the GrGeometryProcessor should * use to provide color. If we are given an override color(ie the given overridecolor is NOT * GrColor_ILLEGAL) then we must always emit that color(currently overrides are only supported * via uniform, but with deferred Geometry we could use attributes). Otherwise, if our color is * ignored then we should not emit a color. Lastly, if we don't have vertex colors then we must * emit a color via uniform * TODO this function changes quite a bit with deferred geometry. There the GrGeometryProcessor * can upload a new color via attribute if needed. */ static GrGPInput GetColorInputType(GrColor* color, GrColor primitiveColor, const InitBT& init, bool hasVertexColor) { if (init.fColorIgnored) { *color = GrColor_ILLEGAL; return kIgnored_GrGPInput; } else if (GrColor_ILLEGAL != init.fOverrideColor) { *color = init.fOverrideColor; return kUniform_GrGPInput; } *color = primitiveColor; if (hasVertexColor) { return kAttribute_GrGPInput; } else { return kUniform_GrGPInput; } } /** * Subclasses call this from their constructor to register vertex attributes. Attributes * will be padded to the nearest 4 bytes for performance reasons. * TODO After deferred geometry, we should do all of this inline in GenerateGeometry alongside * the struct used to actually populate the attributes. This is all extremely fragile, vertex * attributes have to be added in the order they will appear in the struct which maps memory. * The processor key should reflect the vertex attributes, or there lack thereof in the * GrGeometryProcessor. */ const Attribute& addVertexAttrib(const Attribute& attribute) { SkASSERT(fNumAttribs < kMaxVertexAttribs); fVertexStride += attribute.fOffset; fAttribs[fNumAttribs] = attribute; return fAttribs[fNumAttribs++]; } void setWillUseGeoShader() { fWillUseGeoShader = true; } // TODO hack see above void setHasVertexColor() { fHasVertexColor = true; } void setHasLocalCoords() { fHasLocalCoords = true; } virtual void onGetInvariantOutputColor(GrInitInvariantOutput*) const {} virtual void onGetInvariantOutputCoverage(GrInitInvariantOutput*) const = 0; private: virtual bool onCanMakeEqual(const GrBatchTracker& mine, const GrGeometryProcessor& that, const GrBatchTracker& theirs) const = 0; // TODO delete this when we have more advanced equality testing via bundles and the BT virtual bool onIsEqual(const GrGeometryProcessor&) const = 0; bool hasExplicitLocalCoords() const SK_OVERRIDE { return fHasLocalCoords; } GrColor fColor; bool fOpaqueVertexColors; bool fWillUseGeoShader; bool fHasVertexColor; bool fHasLocalCoords; typedef GrPrimitiveProcessor INHERITED; }; /* * The path equivalent of the GP. For now this just manages color. In the long term we plan on * extending this class to handle all nvpr uniform / varying / program work. */ class GrPathProcessor : public GrPrimitiveProcessor { public: static GrPathProcessor* Create(GrColor color, const SkMatrix& viewMatrix = SkMatrix::I(), const SkMatrix& localMatrix = SkMatrix::I()) { return SkNEW_ARGS(GrPathProcessor, (color, viewMatrix, localMatrix)); } void initBatchTracker(GrBatchTracker*, const InitBT&) const SK_OVERRIDE; bool canMakeEqual(const GrBatchTracker& mine, const GrPrimitiveProcessor& that, const GrBatchTracker& theirs) const SK_OVERRIDE; const char* name() const SK_OVERRIDE { return "PathProcessor"; } GrColor color() const { return fColor; } void getInvariantOutputColor(GrInitInvariantOutput* out) const SK_OVERRIDE; void getInvariantOutputCoverage(GrInitInvariantOutput* out) const SK_OVERRIDE; bool willUseGeoShader() const SK_OVERRIDE { return false; } virtual void getGLProcessorKey(const GrBatchTracker& bt, const GrGLCaps& caps, GrProcessorKeyBuilder* b) const SK_OVERRIDE; virtual GrGLPrimitiveProcessor* createGLInstance(const GrBatchTracker& bt, const GrGLCaps& caps) const SK_OVERRIDE; protected: GrPathProcessor(GrColor color, const SkMatrix& viewMatrix, const SkMatrix& localMatrix); private: bool hasExplicitLocalCoords() const SK_OVERRIDE { return false; } GrColor fColor; typedef GrPrimitiveProcessor INHERITED; }; #endif