/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrGeometryProcessor_DEFINED #define GrGeometryProcessor_DEFINED #include "GrPrimitiveProcessor.h" /** * A GrGeometryProcessor is a flexible method for rendering a primitive. The GrGeometryProcessor * has complete control over vertex attributes and uniforms(aside from the render target) but it * must obey the same contract as any GrPrimitiveProcessor, specifically it must emit a color and * coverage into the fragment shader. Where this color and coverage come from is completely the * responsibility of the GrGeometryProcessor. */ class GrGeometryProcessor : public GrPrimitiveProcessor { public: // TODO the Hint can be handled in a much more clean way when we have deferred geometry or // atleast bundles GrGeometryProcessor(GrColor color, const SkMatrix& viewMatrix = SkMatrix::I(), const SkMatrix& localMatrix = SkMatrix::I(), bool opaqueVertexColors = false) : INHERITED(viewMatrix, localMatrix, false) , fColor(color) , fOpaqueVertexColors(opaqueVertexColors) , fWillUseGeoShader(false) , fHasVertexColor(false) , fHasLocalCoords(false) {} bool willUseGeoShader() const { return fWillUseGeoShader; } /* * In an ideal world, two GrGeometryProcessors with the same class id and texture accesses * would ALWAYS be able to batch together. If two GrGeometryProcesosrs are the same then we * will only keep one of them. The remaining GrGeometryProcessor then updates its * GrBatchTracker to incorporate the draw information from the GrGeometryProcessor we discard. * Any bundles associated with the discarded GrGeometryProcessor will be attached to the * remaining GrGeometryProcessor. */ bool canMakeEqual(const GrBatchTracker& mine, const GrPrimitiveProcessor& that, const GrBatchTracker& theirs) const override { if (this->classID() != that.classID() || !this->hasSameTextureAccesses(that)) { return false; } // TODO let the GPs decide this if (!this->viewMatrix().cheapEqualTo(that.viewMatrix())) { return false; } // TODO remove the hint const GrGeometryProcessor& other = that.cast(); if (fHasVertexColor && fOpaqueVertexColors != other.fOpaqueVertexColors) { return false; } // TODO this equality test should really be broken up, some of this can live on the batch // tracker test and some of this should be in bundles if (!this->onIsEqual(other)) { return false; } return this->onCanMakeEqual(mine, other, theirs); } // TODO we can remove color from the GrGeometryProcessor base class once we have bundles of // primitive data GrColor color() const { return fColor; } // TODO this is a total hack until the gp can do deferred geometry bool hasVertexColor() const { return fHasVertexColor; } void getInvariantOutputColor(GrInitInvariantOutput* out) const override; void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override; protected: /* * An optional simple helper function to determine by what means the GrGeometryProcessor should * use to provide color. If we are given an override color(ie the given overridecolor is NOT * GrColor_ILLEGAL) then we must always emit that color(currently overrides are only supported * via uniform, but with deferred Geometry we could use attributes). Otherwise, if our color is * ignored then we should not emit a color. Lastly, if we don't have vertex colors then we must * emit a color via uniform * TODO this function changes quite a bit with deferred geometry. There the GrGeometryProcessor * can upload a new color via attribute if needed. */ static GrGPInput GetColorInputType(GrColor* color, GrColor primitiveColor, const GrPipelineInfo& init, bool hasVertexColor) { if (init.fColorIgnored) { *color = GrColor_ILLEGAL; return kIgnored_GrGPInput; } else if (GrColor_ILLEGAL != init.fOverrideColor) { *color = init.fOverrideColor; return kUniform_GrGPInput; } *color = primitiveColor; if (hasVertexColor) { return kAttribute_GrGPInput; } else { return kUniform_GrGPInput; } } /** * Subclasses call this from their constructor to register vertex attributes. Attributes * will be padded to the nearest 4 bytes for performance reasons. * TODO After deferred geometry, we should do all of this inline in GenerateGeometry alongside * the struct used to actually populate the attributes. This is all extremely fragile, vertex * attributes have to be added in the order they will appear in the struct which maps memory. * The processor key should reflect the vertex attributes, or there lack thereof in the * GrGeometryProcessor. */ const Attribute& addVertexAttrib(const Attribute& attribute) { SkASSERT(fNumAttribs < kMaxVertexAttribs); fVertexStride += attribute.fOffset; fAttribs[fNumAttribs] = attribute; return fAttribs[fNumAttribs++]; } void setWillUseGeoShader() { fWillUseGeoShader = true; } // TODO hack see above void setHasVertexColor() { fHasVertexColor = true; } void setHasLocalCoords() { fHasLocalCoords = true; } virtual void onGetInvariantOutputColor(GrInitInvariantOutput*) const {} virtual void onGetInvariantOutputCoverage(GrInitInvariantOutput*) const = 0; private: virtual bool onCanMakeEqual(const GrBatchTracker& mine, const GrGeometryProcessor& that, const GrBatchTracker& theirs) const = 0; // TODO delete this when we have more advanced equality testing via bundles and the BT virtual bool onIsEqual(const GrGeometryProcessor&) const = 0; bool hasExplicitLocalCoords() const override { return fHasLocalCoords; } GrColor fColor; bool fOpaqueVertexColors; bool fWillUseGeoShader; bool fHasVertexColor; bool fHasLocalCoords; typedef GrPrimitiveProcessor INHERITED; }; #endif