/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrGeometryProcessor_DEFINED #define GrGeometryProcessor_DEFINED #include "GrPrimitiveProcessor.h" /** * A GrGeometryProcessor is a flexible method for rendering a primitive. The GrGeometryProcessor * has complete control over vertex attributes and uniforms(aside from the render target) but it * must obey the same contract as any GrPrimitiveProcessor, specifically it must emit a color and * coverage into the fragment shader. Where this color and coverage come from is completely the * responsibility of the GrGeometryProcessor. */ class GrGeometryProcessor : public GrPrimitiveProcessor { public: GrGeometryProcessor() : fWillUseGeoShader(false) , fLocalCoordsType(kUnused_LocalCoordsType) , fSampleShading(0.0) {} bool willUseGeoShader() const override { return fWillUseGeoShader; } bool hasExplicitLocalCoords() const override { return kHasExplicit_LocalCoordsType == fLocalCoordsType; } /** * Returns the minimum fraction of samples for which the fragment shader will be run. For * instance, if sampleShading is 0.5 in MSAA16 mode, the fragment shader will run a minimum of * 8 times per pixel. The default value is zero. */ float getSampleShading() const override { return fSampleShading; } protected: /** * Subclasses call this from their constructor to register vertex attributes. Attributes * will be padded to the nearest 4 bytes for performance reasons. * TODO After deferred geometry, we should do all of this inline in GenerateGeometry alongside * the struct used to actually populate the attributes. This is all extremely fragile, vertex * attributes have to be added in the order they will appear in the struct which maps memory. * The processor key should reflect the vertex attributes, or there lack thereof in the * GrGeometryProcessor. */ const Attribute& addVertexAttrib(const char* name, GrVertexAttribType type, GrSLPrecision precision = kDefault_GrSLPrecision) { fAttribs.emplace_back(name, type, precision); fVertexStride += fAttribs.back().fOffset; return fAttribs.back(); } void setWillUseGeoShader() { fWillUseGeoShader = true; } /** * If a GrFragmentProcessor in the GrPipeline needs localCoods, we will provide them in one of * three ways * 1) LocalCoordTransform * Position - in Shader * 2) LocalCoordTransform * ExplicitLocalCoords- in Shader * 3) A transformation on the CPU uploaded via vertex attribute */ enum LocalCoordsType { kUnused_LocalCoordsType, kHasExplicit_LocalCoordsType, kHasTransformed_LocalCoordsType }; void setHasExplicitLocalCoords() { SkASSERT(kUnused_LocalCoordsType == fLocalCoordsType); fLocalCoordsType = kHasExplicit_LocalCoordsType; } void setHasTransformedLocalCoords() { SkASSERT(kUnused_LocalCoordsType == fLocalCoordsType); fLocalCoordsType = kHasTransformed_LocalCoordsType; } void setSampleShading(float sampleShading) { fSampleShading = sampleShading; } private: bool fWillUseGeoShader; LocalCoordsType fLocalCoordsType; float fSampleShading; typedef GrPrimitiveProcessor INHERITED; }; #endif