/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrGLProgram.h" #include "GrAllocator.h" #include "GrGLShaderVar.h" #include "SkTrace.h" #include "SkXfermode.h" namespace { enum { /// Used to mark a StageUniLocation field that should be bound /// to a uniform during getUniformLocationsAndInitCache(). kUseUniform = 2000 }; const char* GrPrecision(const GrGLInterface* gl) { if (gl->supportsES()) { return "mediump"; } else { return " "; } } const char* GrShaderPrecision(const GrGLInterface* gl) { if (gl->supportsES()) { return "precision mediump float;\n"; } else { return ""; } } } // namespace #define PRINT_SHADERS 0 typedef GrTAllocator VarArray; // number of each input/output type in a single allocation block static const int gVarsPerBlock = 8; // except FS outputs where we expect 2 at most. static const int gMaxFSOutputs = 2; struct ShaderCodeSegments { ShaderCodeSegments() : fVSUnis(gVarsPerBlock) , fVSAttrs(gVarsPerBlock) , fVSOutputs(gVarsPerBlock) , fGSInputs(gVarsPerBlock) , fGSOutputs(gVarsPerBlock) , fFSInputs(gVarsPerBlock) , fFSUnis(gVarsPerBlock) , fFSOutputs(gMaxFSOutputs) , fUsesGS(false) {} GrStringBuilder fHeader; // VS+FS, GLSL version, etc VarArray fVSUnis; VarArray fVSAttrs; VarArray fVSOutputs; VarArray fGSInputs; VarArray fGSOutputs; VarArray fFSInputs; GrStringBuilder fGSHeader; // layout qualifiers specific to GS VarArray fFSUnis; VarArray fFSOutputs; GrStringBuilder fFSFunctions; GrStringBuilder fVSCode; GrStringBuilder fGSCode; GrStringBuilder fFSCode; bool fUsesGS; }; typedef GrGLProgram::ProgramDesc::StageDesc StageDesc; #if GR_GL_ATTRIBUTE_MATRICES #define VIEW_MATRIX_NAME "aViewM" #else #define VIEW_MATRIX_NAME "uViewM" #endif #define POS_ATTR_NAME "aPosition" #define COL_ATTR_NAME "aColor" #define COV_ATTR_NAME "aCoverage" #define EDGE_ATTR_NAME "aEdge" #define COL_UNI_NAME "uColor" #define EDGES_UNI_NAME "uEdges" #define COL_FILTER_UNI_NAME "uColorFilter" namespace { inline void tex_attr_name(int coordIdx, GrStringBuilder* s) { *s = "aTexCoord"; s->appendS32(coordIdx); } inline GrGLShaderVar::Type float_vector_type(int count) { GR_STATIC_ASSERT(GrGLShaderVar::kFloat_Type == 0); GR_STATIC_ASSERT(GrGLShaderVar::kVec2f_Type == 1); GR_STATIC_ASSERT(GrGLShaderVar::kVec3f_Type == 2); GR_STATIC_ASSERT(GrGLShaderVar::kVec4f_Type == 3); GrAssert(count > 0 && count <= 4); return (GrGLShaderVar::Type)(count - 1); } inline const char* float_vector_type_str(int count) { return GrGLShaderVar::TypeString(float_vector_type(count)); } inline const char* vector_homog_coord(int count) { static const char* HOMOGS[] = {"ERROR", "", ".y", ".z", ".w"}; GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(HOMOGS)); return HOMOGS[count]; } inline const char* vector_nonhomog_coords(int count) { static const char* NONHOMOGS[] = {"ERROR", "", ".x", ".xy", ".xyz"}; GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(NONHOMOGS)); return NONHOMOGS[count]; } inline const char* vector_all_coords(int count) { static const char* ALL[] = {"ERROR", "", ".xy", ".xyz", ".xyzw"}; GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ALL)); return ALL[count]; } inline const char* all_ones_vec(int count) { static const char* ONESVEC[] = {"ERROR", "1.0", "vec2(1,1)", "vec3(1,1,1)", "vec4(1,1,1,1)"}; GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ONESVEC)); return ONESVEC[count]; } inline const char* all_zeros_vec(int count) { static const char* ZEROSVEC[] = {"ERROR", "0.0", "vec2(0,0)", "vec3(0,0,0)", "vec4(0,0,0,0)"}; GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ZEROSVEC)); return ZEROSVEC[count]; } inline const char* declared_color_output_name() { return "fsColorOut"; } inline const char* dual_source_output_name() { return "dualSourceOut"; } inline void tex_matrix_name(int stage, GrStringBuilder* s) { #if GR_GL_ATTRIBUTE_MATRICES *s = "aTexM"; #else *s = "uTexM"; #endif s->appendS32(stage); } inline void normalized_texel_size_name(int stage, GrStringBuilder* s) { *s = "uTexelSize"; s->appendS32(stage); } inline void sampler_name(int stage, GrStringBuilder* s) { *s = "uSampler"; s->appendS32(stage); } inline void radial2_param_name(int stage, GrStringBuilder* s) { *s = "uRadial2Params"; s->appendS32(stage); } inline void convolve_param_names(int stage, GrStringBuilder* k, GrStringBuilder* i) { *k = "uKernel"; k->appendS32(stage); *i = "uImageIncrement"; i->appendS32(stage); } inline void tex_domain_name(int stage, GrStringBuilder* s) { *s = "uTexDom"; s->appendS32(stage); } } GrGLProgram::GrGLProgram() { } GrGLProgram::~GrGLProgram() { } void GrGLProgram::overrideBlend(GrBlendCoeff* srcCoeff, GrBlendCoeff* dstCoeff) const { switch (fProgramDesc.fDualSrcOutput) { case ProgramDesc::kNone_DualSrcOutput: break; // the prog will write a coverage value to the secondary // output and the dst is blended by one minus that value. case ProgramDesc::kCoverage_DualSrcOutput: case ProgramDesc::kCoverageISA_DualSrcOutput: case ProgramDesc::kCoverageISC_DualSrcOutput: *dstCoeff = (GrBlendCoeff)GrGpu::kIS2C_BlendCoeff; break; default: GrCrash("Unexpected dual source blend output"); break; } } // assigns modulation of two vars to an output var // vars can be vec4s or floats (or one of each) // result is always vec4 // if either var is "" then assign to the other var // if both are "" then assign all ones static inline void modulate_helper(const char* outputVar, const char* var0, const char* var1, GrStringBuilder* code) { GrAssert(NULL != outputVar); GrAssert(NULL != var0); GrAssert(NULL != var1); GrAssert(NULL != code); bool has0 = '\0' != *var0; bool has1 = '\0' != *var1; if (!has0 && !has1) { code->appendf("\t%s = %s;\n", outputVar, all_ones_vec(4)); } else if (!has0) { code->appendf("\t%s = vec4(%s);\n", outputVar, var1); } else if (!has1) { code->appendf("\t%s = vec4(%s);\n", outputVar, var0); } else { code->appendf("\t%s = vec4(%s * %s);\n", outputVar, var0, var1); } } // assigns addition of two vars to an output var // vars can be vec4s or floats (or one of each) // result is always vec4 // if either var is "" then assign to the other var // if both are "" then assign all zeros static inline void add_helper(const char* outputVar, const char* var0, const char* var1, GrStringBuilder* code) { GrAssert(NULL != outputVar); GrAssert(NULL != var0); GrAssert(NULL != var1); GrAssert(NULL != code); bool has0 = '\0' != *var0; bool has1 = '\0' != *var1; if (!has0 && !has1) { code->appendf("\t%s = %s;\n", outputVar, all_zeros_vec(4)); } else if (!has0) { code->appendf("\t%s = vec4(%s);\n", outputVar, var1); } else if (!has1) { code->appendf("\t%s = vec4(%s);\n", outputVar, var0); } else { code->appendf("\t%s = vec4(%s + %s);\n", outputVar, var0, var1); } } // given two blend coeffecients determine whether the src // and/or dst computation can be omitted. static inline void needBlendInputs(SkXfermode::Coeff srcCoeff, SkXfermode::Coeff dstCoeff, bool* needSrcValue, bool* needDstValue) { if (SkXfermode::kZero_Coeff == srcCoeff) { switch (dstCoeff) { // these all read the src case SkXfermode::kSC_Coeff: case SkXfermode::kISC_Coeff: case SkXfermode::kSA_Coeff: case SkXfermode::kISA_Coeff: *needSrcValue = true; break; default: *needSrcValue = false; break; } } else { *needSrcValue = true; } if (SkXfermode::kZero_Coeff == dstCoeff) { switch (srcCoeff) { // these all read the dst case SkXfermode::kDC_Coeff: case SkXfermode::kIDC_Coeff: case SkXfermode::kDA_Coeff: case SkXfermode::kIDA_Coeff: *needDstValue = true; break; default: *needDstValue = false; break; } } else { *needDstValue = true; } } /** * Create a blend_coeff * value string to be used in shader code. Sets empty * string if result is trivially zero. */ static void blendTermString(GrStringBuilder* str, SkXfermode::Coeff coeff, const char* src, const char* dst, const char* value) { switch (coeff) { case SkXfermode::kZero_Coeff: /** 0 */ *str = ""; break; case SkXfermode::kOne_Coeff: /** 1 */ *str = value; break; case SkXfermode::kSC_Coeff: str->printf("(%s * %s)", src, value); break; case SkXfermode::kISC_Coeff: str->printf("((%s - %s) * %s)", all_ones_vec(4), src, value); break; case SkXfermode::kDC_Coeff: str->printf("(%s * %s)", dst, value); break; case SkXfermode::kIDC_Coeff: str->printf("((%s - %s) * %s)", all_ones_vec(4), dst, value); break; case SkXfermode::kSA_Coeff: /** src alpha */ str->printf("(%s.a * %s)", src, value); break; case SkXfermode::kISA_Coeff: /** inverse src alpha (i.e. 1 - sa) */ str->printf("((1.0 - %s.a) * %s)", src, value); break; case SkXfermode::kDA_Coeff: /** dst alpha */ str->printf("(%s.a * %s)", dst, value); break; case SkXfermode::kIDA_Coeff: /** inverse dst alpha (i.e. 1 - da) */ str->printf("((1.0 - %s.a) * %s)", dst, value); break; default: GrCrash("Unexpected xfer coeff."); break; } } /** * Adds a line to the fragment shader code which modifies the color by * the specified color filter. */ static void addColorFilter(GrStringBuilder* fsCode, const char * outputVar, SkXfermode::Coeff uniformCoeff, SkXfermode::Coeff colorCoeff, const char* inColor) { GrStringBuilder colorStr, constStr; blendTermString(&colorStr, colorCoeff, COL_FILTER_UNI_NAME, inColor, inColor); blendTermString(&constStr, uniformCoeff, COL_FILTER_UNI_NAME, inColor, COL_FILTER_UNI_NAME); add_helper(outputVar, colorStr.c_str(), constStr.c_str(), fsCode); } namespace { const char* glsl_version_string(const GrGLInterface* gl, GrGLProgram::GLSLVersion v) { switch (v) { case GrGLProgram::k110_GLSLVersion: if (gl->supportsES()) { // ES2s shader language is based on version 1.20 but is version // 1.00 of the ES language. return "#version 100\n"; } else { return "#version 110\n"; } case GrGLProgram::k130_GLSLVersion: GrAssert(!gl->supportsES()); return "#version 130\n"; case GrGLProgram::k150_GLSLVersion: GrAssert(!gl->supportsES()); return "#version 150\n"; default: GrCrash("Unknown GL version."); return ""; // suppress warning } } // Adds a var that is computed in the VS and read in FS. // If there is a GS it will just pass it through. void append_varying(GrGLShaderVar::Type type, const char* name, ShaderCodeSegments* segments, const char** vsOutName = NULL, const char** fsInName = NULL) { segments->fVSOutputs.push_back(); segments->fVSOutputs.back().setType(type); segments->fVSOutputs.back().accessName()->printf("v%s", name); if (vsOutName) { *vsOutName = segments->fVSOutputs.back().getName().c_str(); } // input to FS comes either from VS or GS const GrStringBuilder* fsName; if (segments->fUsesGS) { // if we have a GS take each varying in as an array // and output as non-array. segments->fGSInputs.push_back(); segments->fGSInputs.back().setType(type); segments->fGSInputs.back().setUnsizedArray(); *segments->fGSInputs.back().accessName() = segments->fVSOutputs.back().getName(); segments->fGSOutputs.push_back(); segments->fGSOutputs.back().setType(type); segments->fGSOutputs.back().accessName()->printf("g%s", name); fsName = segments->fGSOutputs.back().accessName(); } else { fsName = segments->fVSOutputs.back().accessName(); } segments->fFSInputs.push_back(); segments->fFSInputs.back().setType(type); segments->fFSInputs.back().setName(*fsName); if (fsInName) { *fsInName = fsName->c_str(); } } // version of above that adds a stage number to the // the var name (for uniqueness) void append_varying(GrGLShaderVar::Type type, const char* name, int stageNum, ShaderCodeSegments* segments, const char** vsOutName = NULL, const char** fsInName = NULL) { GrStringBuilder nameWithStage(name); nameWithStage.appendS32(stageNum); append_varying(type, nameWithStage.c_str(), segments, vsOutName, fsInName); } } void GrGLProgram::genEdgeCoverage(const GrGLInterface* gl, GrVertexLayout layout, CachedData* programData, GrStringBuilder* coverageVar, ShaderCodeSegments* segments) const { if (fProgramDesc.fEdgeAANumEdges > 0) { segments->fFSUnis.push_back().set(GrGLShaderVar::kVec3f_Type, EDGES_UNI_NAME, fProgramDesc.fEdgeAANumEdges); programData->fUniLocations.fEdgesUni = kUseUniform; int count = fProgramDesc.fEdgeAANumEdges; segments->fFSCode.append( "\tvec3 pos = vec3(gl_FragCoord.xy, 1);\n"); for (int i = 0; i < count; i++) { segments->fFSCode.append("\tfloat a"); segments->fFSCode.appendS32(i); segments->fFSCode.append(" = clamp(dot(" EDGES_UNI_NAME "["); segments->fFSCode.appendS32(i); segments->fFSCode.append("], pos), 0.0, 1.0);\n"); } if (fProgramDesc.fEdgeAAConcave && (count & 0x01) == 0) { // For concave polys, we consider the edges in pairs. segments->fFSFunctions.append("float cross2(vec2 a, vec2 b) {\n"); segments->fFSFunctions.append("\treturn dot(a, vec2(b.y, -b.x));\n"); segments->fFSFunctions.append("}\n"); for (int i = 0; i < count; i += 2) { segments->fFSCode.appendf("\tfloat eb%d;\n", i / 2); segments->fFSCode.appendf("\tif (cross2(" EDGES_UNI_NAME "[%d].xy, " EDGES_UNI_NAME "[%d].xy) < 0.0) {\n", i, i + 1); segments->fFSCode.appendf("\t\teb%d = a%d * a%d;\n", i / 2, i, i + 1); segments->fFSCode.append("\t} else {\n"); segments->fFSCode.appendf("\t\teb%d = a%d + a%d - a%d * a%d;\n", i / 2, i, i + 1, i, i + 1); segments->fFSCode.append("\t}\n"); } segments->fFSCode.append("\tfloat edgeAlpha = "); for (int i = 0; i < count / 2 - 1; i++) { segments->fFSCode.appendf("min(eb%d, ", i); } segments->fFSCode.appendf("eb%d", count / 2 - 1); for (int i = 0; i < count / 2 - 1; i++) { segments->fFSCode.append(")"); } segments->fFSCode.append(";\n"); } else { segments->fFSCode.append("\tfloat edgeAlpha = "); for (int i = 0; i < count - 1; i++) { segments->fFSCode.appendf("min(a%d * a%d, ", i, i + 1); } segments->fFSCode.appendf("a%d * a0", count - 1); for (int i = 0; i < count - 1; i++) { segments->fFSCode.append(")"); } segments->fFSCode.append(";\n"); } *coverageVar = "edgeAlpha"; } else if (layout & GrDrawTarget::kEdge_VertexLayoutBit) { const char *vsName, *fsName; append_varying(GrGLShaderVar::kVec4f_Type, "Edge", segments, &vsName, &fsName); segments->fVSAttrs.push_back().set(GrGLShaderVar::kVec4f_Type, EDGE_ATTR_NAME); segments->fVSCode.appendf("\t%s = " EDGE_ATTR_NAME ";\n", vsName); if (GrDrawState::kHairLine_EdgeType == fProgramDesc.fVertexEdgeType) { segments->fFSCode.appendf("\tfloat edgeAlpha = abs(dot(vec3(gl_FragCoord.xy,1), %s.xyz));\n", fsName); } else { GrAssert(GrDrawState::kHairQuad_EdgeType == fProgramDesc.fVertexEdgeType); // for now we know we're not in perspective, so we could compute this // per-quadratic rather than per pixel segments->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName); segments->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName); segments->fFSCode.appendf("\tfloat dfdx = 2.0*%s.x*duvdx.x - duvdx.y;\n", fsName); segments->fFSCode.appendf("\tfloat dfdy = 2.0*%s.x*duvdy.x - duvdy.y;\n", fsName); segments->fFSCode.appendf("\tfloat edgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName); segments->fFSCode.append("\tedgeAlpha = sqrt(edgeAlpha*edgeAlpha / (dfdx*dfdx + dfdy*dfdy));\n"); if (gl->supportsES()) { segments->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n"); } } segments->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n"); *coverageVar = "edgeAlpha"; } else { coverageVar->reset(); } } namespace { // returns true if the color output was explicitly declared or not. bool decl_and_get_fs_color_output(GrGLProgram::GLSLVersion v, VarArray* fsOutputs, const char** name) { switch (v) { case GrGLProgram::k110_GLSLVersion: *name = "gl_FragColor"; return false; break; case GrGLProgram::k130_GLSLVersion: // fallthru case GrGLProgram::k150_GLSLVersion: *name = declared_color_output_name(); fsOutputs->push_back().set(GrGLShaderVar::kVec4f_Type, declared_color_output_name()); return true; break; default: GrCrash("Unknown GLSL version."); return false; // suppress warning } } void genInputColor(GrGLProgram::ProgramDesc::ColorInput colorInput, GrGLProgram::CachedData* programData, ShaderCodeSegments* segments, GrStringBuilder* inColor) { switch (colorInput) { case GrGLProgram::ProgramDesc::kAttribute_ColorInput: { segments->fVSAttrs.push_back().set(GrGLShaderVar::kVec4f_Type, COL_ATTR_NAME); const char *vsName, *fsName; append_varying(GrGLShaderVar::kVec4f_Type, "Color", segments, &vsName, &fsName); segments->fVSCode.appendf("\t%s = " COL_ATTR_NAME ";\n", vsName); *inColor = fsName; } break; case GrGLProgram::ProgramDesc::kUniform_ColorInput: segments->fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type, COL_UNI_NAME); programData->fUniLocations.fColorUni = kUseUniform; *inColor = COL_UNI_NAME; break; case GrGLProgram::ProgramDesc::kTransBlack_ColorInput: GrAssert(!"needComputedColor should be false."); break; case GrGLProgram::ProgramDesc::kSolidWhite_ColorInput: break; default: GrCrash("Unknown color type."); break; } } void genPerVertexCoverage(ShaderCodeSegments* segments, GrStringBuilder* inCoverage) { segments->fVSAttrs.push_back().set(GrGLShaderVar::kFloat_Type, COV_ATTR_NAME); const char *vsName, *fsName; append_varying(GrGLShaderVar::kFloat_Type, "Coverage", segments, &vsName, &fsName); segments->fVSCode.appendf("\t%s = " COV_ATTR_NAME ";\n", vsName); if (inCoverage->size()) { segments->fFSCode.appendf("\tfloat edgeAndAttrCov = %s * %s;\n", fsName, inCoverage->c_str()); *inCoverage = "edgeAndAttrCov"; } else { *inCoverage = fsName; } } } void GrGLProgram::genGeometryShader(const GrGLInterface* gl, GLSLVersion glslVersion, ShaderCodeSegments* segments) const { #if GR_GL_EXPERIMENTAL_GS if (fProgramDesc.fExperimentalGS) { GrAssert(glslVersion >= k150_GLSLVersion); segments->fGSHeader.append("layout(triangles) in;\n" "layout(triangle_strip, max_vertices = 6) out;\n"); segments->fGSCode.append("void main() {\n" "\tfor (int i = 0; i < 3; ++i) {\n" "\t\tgl_Position = gl_in[i].gl_Position;\n"); if (this->fProgramDesc.fEmitsPointSize) { segments->fGSCode.append("\t\tgl_PointSize = 1.0;\n"); } GrAssert(segments->fGSInputs.count() == segments->fGSOutputs.count()); int count = segments->fGSInputs.count(); for (int i = 0; i < count; ++i) { segments->fGSCode.appendf("\t\t%s = %s[i];\n", segments->fGSOutputs[i].getName().c_str(), segments->fGSInputs[i].getName().c_str()); } segments->fGSCode.append("\t\tEmitVertex();\n" "\t}\n" "\tEndPrimitive();\n" "}\n"); } #endif } bool GrGLProgram::genProgram(const GrGLInterface* gl, GLSLVersion glslVersion, GrGLProgram::CachedData* programData) const { ShaderCodeSegments segments; const uint32_t& layout = fProgramDesc.fVertexLayout; programData->fUniLocations.reset(); #if GR_GL_EXPERIMENTAL_GS segments.fUsesGS = fProgramDesc.fExperimentalGS; #endif SkXfermode::Coeff colorCoeff, uniformCoeff; // The rest of transfer mode color filters have not been implemented if (fProgramDesc.fColorFilterXfermode < SkXfermode::kCoeffModesCnt) { GR_DEBUGCODE(bool success =) SkXfermode::ModeAsCoeff(static_cast (fProgramDesc.fColorFilterXfermode), &uniformCoeff, &colorCoeff); GR_DEBUGASSERT(success); } else { colorCoeff = SkXfermode::kOne_Coeff; uniformCoeff = SkXfermode::kZero_Coeff; } // If we know the final color is going to be all zeros then we can // simplify the color filter coeffecients. needComputedColor will then // come out false below. if (ProgramDesc::kTransBlack_ColorInput == fProgramDesc.fColorInput) { colorCoeff = SkXfermode::kZero_Coeff; if (SkXfermode::kDC_Coeff == uniformCoeff || SkXfermode::kDA_Coeff == uniformCoeff) { uniformCoeff = SkXfermode::kZero_Coeff; } else if (SkXfermode::kIDC_Coeff == uniformCoeff || SkXfermode::kIDA_Coeff == uniformCoeff) { uniformCoeff = SkXfermode::kOne_Coeff; } } bool needColorFilterUniform; bool needComputedColor; needBlendInputs(uniformCoeff, colorCoeff, &needColorFilterUniform, &needComputedColor); // the dual source output has no canonical var name, have to // declare an output, which is incompatible with gl_FragColor/gl_FragData. const char* fsColorOutput = NULL; bool dualSourceOutputWritten = false; segments.fHeader.printf(glsl_version_string(gl, glslVersion)); bool isColorDeclared = decl_and_get_fs_color_output(glslVersion, &segments.fFSOutputs, &fsColorOutput); #if GR_GL_ATTRIBUTE_MATRICES segments.fVSAttrs.push_back().set(GrGLShaderVar::kMat33f_Type, VIEW_MATRIX_NAME); programData->fUniLocations.fViewMatrixUni = kSetAsAttribute; #else segments.fVSUnis.push_back().set(GrGLShaderVar::kMat33f_Type, VIEW_MATRIX_NAME); programData->fUniLocations.fViewMatrixUni = kUseUniform; #endif segments.fVSAttrs.push_back().set(GrGLShaderVar::kVec2f_Type, POS_ATTR_NAME); segments.fVSCode.append( "void main() {\n" "\tvec3 pos3 = " VIEW_MATRIX_NAME " * vec3("POS_ATTR_NAME", 1);\n" "\tgl_Position = vec4(pos3.xy, 0, pos3.z);\n"); // incoming color to current stage being processed. GrStringBuilder inColor; if (needComputedColor) { genInputColor((ProgramDesc::ColorInput) fProgramDesc.fColorInput, programData, &segments, &inColor); } // we output point size in the GS if present if (fProgramDesc.fEmitsPointSize && !segments.fUsesGS){ segments.fVSCode.append("\tgl_PointSize = 1.0;\n"); } segments.fFSCode.append("void main() {\n"); // add texture coordinates that are used to the list of vertex attr decls GrStringBuilder texCoordAttrs[GrDrawState::kMaxTexCoords]; for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) { if (GrDrawTarget::VertexUsesTexCoordIdx(t, layout)) { tex_attr_name(t, texCoordAttrs + t); segments.fVSAttrs.push_back().set(GrGLShaderVar::kVec2f_Type, texCoordAttrs[t].c_str()); } } /////////////////////////////////////////////////////////////////////////// // compute the final color // if we have color stages string them together, feeding the output color // of each to the next and generating code for each stage. if (needComputedColor) { GrStringBuilder outColor; for (int s = 0; s < fProgramDesc.fFirstCoverageStage; ++s) { if (fProgramDesc.fStages[s].isEnabled()) { // create var to hold stage result outColor = "color"; outColor.appendS32(s); segments.fFSCode.appendf("\tvec4 %s;\n", outColor.c_str()); const char* inCoords; // figure out what our input coords are if (GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(s) & layout) { inCoords = POS_ATTR_NAME; } else { int tcIdx = GrDrawTarget::VertexTexCoordsForStage(s, layout); // we better have input tex coordinates if stage is enabled. GrAssert(tcIdx >= 0); GrAssert(texCoordAttrs[tcIdx].size()); inCoords = texCoordAttrs[tcIdx].c_str(); } this->genStageCode(gl, s, fProgramDesc.fStages[s], inColor.size() ? inColor.c_str() : NULL, outColor.c_str(), inCoords, &segments, &programData->fUniLocations.fStages[s]); inColor = outColor; } } } // if have all ones or zeros for the "dst" input to the color filter then we // may be able to make additional optimizations. if (needColorFilterUniform && needComputedColor && !inColor.size()) { GrAssert(ProgramDesc::kSolidWhite_ColorInput == fProgramDesc.fColorInput); bool uniformCoeffIsZero = SkXfermode::kIDC_Coeff == uniformCoeff || SkXfermode::kIDA_Coeff == uniformCoeff; if (uniformCoeffIsZero) { uniformCoeff = SkXfermode::kZero_Coeff; bool bogus; needBlendInputs(SkXfermode::kZero_Coeff, colorCoeff, &needColorFilterUniform, &bogus); } } if (needColorFilterUniform) { segments.fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type, COL_FILTER_UNI_NAME); programData->fUniLocations.fColorFilterUni = kUseUniform; } bool wroteFragColorZero = false; if (SkXfermode::kZero_Coeff == uniformCoeff && SkXfermode::kZero_Coeff == colorCoeff) { segments.fFSCode.appendf("\t%s = %s;\n", fsColorOutput, all_zeros_vec(4)); wroteFragColorZero = true; } else if (SkXfermode::kDst_Mode != fProgramDesc.fColorFilterXfermode) { segments.fFSCode.appendf("\tvec4 filteredColor;\n"); const char* color; if (inColor.size()) { color = inColor.c_str(); } else { if (ProgramDesc::kSolidWhite_ColorInput == fProgramDesc.fColorInput) { color = all_ones_vec(4); } else { color = all_zeros_vec(4); } } addColorFilter(&segments.fFSCode, "filteredColor", uniformCoeff, colorCoeff, color); inColor = "filteredColor"; } /////////////////////////////////////////////////////////////////////////// // compute the partial coverage (coverage stages and edge aa) GrStringBuilder inCoverage; // we don't need to compute coverage at all if we know the final shader // output will be zero and we don't have a dual src blend output. if (!wroteFragColorZero || ProgramDesc::kNone_DualSrcOutput != fProgramDesc.fDualSrcOutput) { // get edge AA coverage and use it as inCoverage to first coverage stage this->genEdgeCoverage(gl, layout, programData, &inCoverage, &segments); // include explicit per-vertex coverage if we have it if (GrDrawTarget::kCoverage_VertexLayoutBit & layout) { genPerVertexCoverage(&segments, &inCoverage); } GrStringBuilder outCoverage; const int& startStage = fProgramDesc.fFirstCoverageStage; for (int s = startStage; s < GrDrawState::kNumStages; ++s) { if (fProgramDesc.fStages[s].isEnabled()) { // create var to hold stage output outCoverage = "coverage"; outCoverage.appendS32(s); segments.fFSCode.appendf("\tvec4 %s;\n", outCoverage.c_str()); const char* inCoords; // figure out what our input coords are if (GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(s) & layout) { inCoords = POS_ATTR_NAME; } else { int tcIdx = GrDrawTarget::VertexTexCoordsForStage(s, layout); // we better have input tex coordinates if stage is enabled. GrAssert(tcIdx >= 0); GrAssert(texCoordAttrs[tcIdx].size()); inCoords = texCoordAttrs[tcIdx].c_str(); } genStageCode(gl, s, fProgramDesc.fStages[s], inCoverage.size() ? inCoverage.c_str() : NULL, outCoverage.c_str(), inCoords, &segments, &programData->fUniLocations.fStages[s]); inCoverage = outCoverage; } } if (ProgramDesc::kNone_DualSrcOutput != fProgramDesc.fDualSrcOutput) { segments.fFSOutputs.push_back().set(GrGLShaderVar::kVec4f_Type, dual_source_output_name()); bool outputIsZero = false; GrStringBuilder coeff; if (ProgramDesc::kCoverage_DualSrcOutput != fProgramDesc.fDualSrcOutput && !wroteFragColorZero) { if (!inColor.size()) { outputIsZero = true; } else { if (fProgramDesc.fDualSrcOutput == ProgramDesc::kCoverageISA_DualSrcOutput) { coeff.printf("(1 - %s.a)", inColor.c_str()); } else { coeff.printf("(vec4(1,1,1,1) - %s)", inColor.c_str()); } } } if (outputIsZero) { segments.fFSCode.appendf("\t%s = %s;\n", dual_source_output_name(), all_zeros_vec(4)); } else { modulate_helper(dual_source_output_name(), coeff.c_str(), inCoverage.c_str(), &segments.fFSCode); } dualSourceOutputWritten = true; } } /////////////////////////////////////////////////////////////////////////// // combine color and coverage as frag color if (!wroteFragColorZero) { modulate_helper(fsColorOutput, inColor.c_str(), inCoverage.c_str(), &segments.fFSCode); if (ProgramDesc::kNo_OutputPM == fProgramDesc.fOutputPM) { segments.fFSCode.appendf("\t%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(%s.rgb / %s.a, %s.a);\n", fsColorOutput, fsColorOutput, fsColorOutput, fsColorOutput, fsColorOutput); } } segments.fVSCode.append("}\n"); segments.fFSCode.append("}\n"); /////////////////////////////////////////////////////////////////////////// // insert GS #if GR_DEBUG this->genGeometryShader(gl, glslVersion, &segments); #endif /////////////////////////////////////////////////////////////////////////// // compile and setup attribs and unis if (!CompileShaders(gl, glslVersion, segments, programData)) { return false; } if (!this->bindOutputsAttribsAndLinkProgram(gl, texCoordAttrs, isColorDeclared, dualSourceOutputWritten, programData)) { return false; } this->getUniformLocationsAndInitCache(gl, programData); return true; } namespace { inline void expand_decls(const VarArray& vars, const GrGLInterface* gl, const char* prefix, GrStringBuilder* string) { const int count = vars.count(); for (int i = 0; i < count; ++i) { string->append(prefix); string->append(" "); vars[i].appendDecl(gl, string); string->append(";\n"); } } inline void print_shader(int stringCnt, const char** strings, int* stringLengths) { for (int i = 0; i < stringCnt; ++i) { if (NULL == stringLengths || stringLengths[i] < 0) { GrPrintf(strings[i]); } else { GrPrintf("%.*s", stringLengths[i], strings[i]); } } } typedef SkTArray StrArray; #define PREALLOC_STR_ARRAY(N) SkSTArray<(N), const char*, true> typedef SkTArray LengthArray; #define PREALLOC_LENGTH_ARRAY(N) SkSTArray<(N), int, true> // these shouldn't relocate typedef GrTAllocator TempArray; #define PREALLOC_TEMP_ARRAY(N) GrSTAllocator<(N), GrStringBuilder> inline void append_string(const GrStringBuilder& str, StrArray* strings, LengthArray* lengths) { int length = (int) str.size(); if (length) { strings->push_back(str.c_str()); lengths->push_back(length); } GrAssert(strings->count() == lengths->count()); } inline void append_decls(const VarArray& vars, const GrGLInterface* gl, const char* prefix, StrArray* strings, LengthArray* lengths, TempArray* temp) { expand_decls(vars, gl, prefix, &temp->push_back()); append_string(temp->back(), strings, lengths); } } bool GrGLProgram::CompileShaders(const GrGLInterface* gl, GLSLVersion glslVersion, const ShaderCodeSegments& segments, CachedData* programData) { enum { kPreAllocStringCnt = 8 }; PREALLOC_STR_ARRAY(kPreAllocStringCnt) strs; PREALLOC_LENGTH_ARRAY(kPreAllocStringCnt) lengths; PREALLOC_TEMP_ARRAY(kPreAllocStringCnt) temps; GrStringBuilder unis; GrStringBuilder inputs; GrStringBuilder outputs; static const char* gVaryingPrefixes[2][2] = {{"varying", "varying"}, {"out", "in"}}; const char** varyingPrefixes = k110_GLSLVersion == glslVersion ? gVaryingPrefixes[0] : gVaryingPrefixes[1]; const char* attributePrefix = k110_GLSLVersion == glslVersion ? "attribute" : "in"; append_string(segments.fHeader, &strs, &lengths); append_decls(segments.fVSUnis, gl, "uniform", &strs, &lengths, &temps); append_decls(segments.fVSAttrs, gl, attributePrefix, &strs, &lengths, &temps); append_decls(segments.fVSOutputs, gl, varyingPrefixes[0], &strs, &lengths, &temps); append_string(segments.fVSCode, &strs, &lengths); #if PRINT_SHADERS print_shader(strs.count(), &strs[0], &lengths[0]); GrPrintf("\n"); #endif programData->fVShaderID = CompileShader(gl, GR_GL_VERTEX_SHADER, strs.count(), &strs[0], &lengths[0]); if (!programData->fVShaderID) { return false; } if (segments.fUsesGS) { strs.reset(); lengths.reset(); temps.reset(); append_string(segments.fHeader, &strs, &lengths); append_string(segments.fGSHeader, &strs, &lengths); append_decls(segments.fGSInputs, gl, "in", &strs, &lengths, &temps); append_decls(segments.fGSOutputs, gl, "out", &strs, &lengths, &temps); append_string(segments.fGSCode, &strs, &lengths); #if PRINT_SHADERS print_shader(strs.count(), &strs[0], &lengths[0]); GrPrintf("\n"); #endif programData->fGShaderID = CompileShader(gl, GR_GL_GEOMETRY_SHADER, strs.count(), &strs[0], &lengths[0]); } else { programData->fGShaderID = 0; } strs.reset(); lengths.reset(); temps.reset(); append_string(segments.fHeader, &strs, &lengths); GrStringBuilder precisionStr(GrShaderPrecision(gl)); append_string(precisionStr, &strs, &lengths); append_decls(segments.fFSUnis, gl, "uniform", &strs, &lengths, &temps); append_decls(segments.fFSInputs, gl, varyingPrefixes[1], &strs, &lengths, &temps); // We shouldn't have declared outputs on 1.10 GrAssert(k110_GLSLVersion != glslVersion || segments.fFSOutputs.empty()); append_decls(segments.fFSOutputs, gl, "out", &strs, &lengths, &temps); append_string(segments.fFSFunctions, &strs, &lengths); append_string(segments.fFSCode, &strs, &lengths); #if PRINT_SHADERS print_shader(strs.count(), &strs[0], &lengths[0]); GrPrintf("\n"); #endif programData->fFShaderID = CompileShader(gl, GR_GL_FRAGMENT_SHADER, strs.count(), &strs[0], &lengths[0]); if (!programData->fFShaderID) { return false; } return true; } GrGLuint GrGLProgram::CompileShader(const GrGLInterface* gl, GrGLenum type, int stringCnt, const char** strings, int* stringLengths) { SK_TRACE_EVENT1("GrGLProgram::CompileShader", "stringCount", SkStringPrintf("%i", stringCnt).c_str()); GrGLuint shader; GR_GL_CALL_RET(gl, shader, CreateShader(type)); if (0 == shader) { return 0; } GrGLint compiled = GR_GL_INIT_ZERO; GR_GL_CALL(gl, ShaderSource(shader, stringCnt, strings, stringLengths)); GR_GL_CALL(gl, CompileShader(shader)); GR_GL_CALL(gl, GetShaderiv(shader, GR_GL_COMPILE_STATUS, &compiled)); if (!compiled) { GrGLint infoLen = GR_GL_INIT_ZERO; GR_GL_CALL(gl, GetShaderiv(shader, GR_GL_INFO_LOG_LENGTH, &infoLen)); SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger if (infoLen > 0) { // retrieve length even though we don't need it to workaround // bug in chrome cmd buffer param validation. GrGLsizei length = GR_GL_INIT_ZERO; GR_GL_CALL(gl, GetShaderInfoLog(shader, infoLen+1, &length, (char*)log.get())); print_shader(stringCnt, strings, stringLengths); GrPrintf("\n%s", log.get()); } GrAssert(!"Shader compilation failed!"); GR_GL_CALL(gl, DeleteShader(shader)); return 0; } return shader; } bool GrGLProgram::bindOutputsAttribsAndLinkProgram( const GrGLInterface* gl, GrStringBuilder texCoordAttrNames[], bool bindColorOut, bool bindDualSrcOut, CachedData* programData) const { GR_GL_CALL_RET(gl, programData->fProgramID, CreateProgram()); if (!programData->fProgramID) { return false; } const GrGLint& progID = programData->fProgramID; GR_GL_CALL(gl, AttachShader(progID, programData->fVShaderID)); if (programData->fGShaderID) { GR_GL_CALL(gl, AttachShader(progID, programData->fGShaderID)); } GR_GL_CALL(gl, AttachShader(progID, programData->fFShaderID)); if (bindColorOut) { GR_GL_CALL(gl, BindFragDataLocation(programData->fProgramID, 0, declared_color_output_name())); } if (bindDualSrcOut) { GR_GL_CALL(gl, BindFragDataLocationIndexed(programData->fProgramID, 0, 1, dual_source_output_name())); } // Bind the attrib locations to same values for all shaders GR_GL_CALL(gl, BindAttribLocation(progID, PositionAttributeIdx(), POS_ATTR_NAME)); for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) { if (texCoordAttrNames[t].size()) { GR_GL_CALL(gl, BindAttribLocation(progID, TexCoordAttributeIdx(t), texCoordAttrNames[t].c_str())); } } if (kSetAsAttribute == programData->fUniLocations.fViewMatrixUni) { GR_GL_CALL(gl, BindAttribLocation(progID, ViewMatrixAttributeIdx(), VIEW_MATRIX_NAME)); } for (int s = 0; s < GrDrawState::kNumStages; ++s) { const StageUniLocations& unis = programData->fUniLocations.fStages[s]; if (kSetAsAttribute == unis.fTextureMatrixUni) { GrStringBuilder matName; tex_matrix_name(s, &matName); GR_GL_CALL(gl, BindAttribLocation(progID, TextureMatrixAttributeIdx(s), matName.c_str())); } } GR_GL_CALL(gl, BindAttribLocation(progID, ColorAttributeIdx(), COL_ATTR_NAME)); GR_GL_CALL(gl, BindAttribLocation(progID, CoverageAttributeIdx(), COV_ATTR_NAME)); GR_GL_CALL(gl, BindAttribLocation(progID, EdgeAttributeIdx(), EDGE_ATTR_NAME)); GR_GL_CALL(gl, LinkProgram(progID)); GrGLint linked = GR_GL_INIT_ZERO; GR_GL_CALL(gl, GetProgramiv(progID, GR_GL_LINK_STATUS, &linked)); if (!linked) { GrGLint infoLen = GR_GL_INIT_ZERO; GR_GL_CALL(gl, GetProgramiv(progID, GR_GL_INFO_LOG_LENGTH, &infoLen)); SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger if (infoLen > 0) { // retrieve length even though we don't need it to workaround // bug in chrome cmd buffer param validation. GrGLsizei length = GR_GL_INIT_ZERO; GR_GL_CALL(gl, GetProgramInfoLog(progID, infoLen+1, &length, (char*)log.get())); GrPrintf((char*)log.get()); } GrAssert(!"Error linking program"); GR_GL_CALL(gl, DeleteProgram(progID)); programData->fProgramID = 0; return false; } return true; } void GrGLProgram::getUniformLocationsAndInitCache(const GrGLInterface* gl, CachedData* programData) const { const GrGLint& progID = programData->fProgramID; if (kUseUniform == programData->fUniLocations.fViewMatrixUni) { GR_GL_CALL_RET(gl, programData->fUniLocations.fViewMatrixUni, GetUniformLocation(progID, VIEW_MATRIX_NAME)); GrAssert(kUnusedUniform != programData->fUniLocations.fViewMatrixUni); } if (kUseUniform == programData->fUniLocations.fColorUni) { GR_GL_CALL_RET(gl, programData->fUniLocations.fColorUni, GetUniformLocation(progID, COL_UNI_NAME)); GrAssert(kUnusedUniform != programData->fUniLocations.fColorUni); } if (kUseUniform == programData->fUniLocations.fColorFilterUni) { GR_GL_CALL_RET(gl, programData->fUniLocations.fColorFilterUni, GetUniformLocation(progID, COL_FILTER_UNI_NAME)); GrAssert(kUnusedUniform != programData->fUniLocations.fColorFilterUni); } if (kUseUniform == programData->fUniLocations.fEdgesUni) { GR_GL_CALL_RET(gl, programData->fUniLocations.fEdgesUni, GetUniformLocation(progID, EDGES_UNI_NAME)); GrAssert(kUnusedUniform != programData->fUniLocations.fEdgesUni); } else { programData->fUniLocations.fEdgesUni = kUnusedUniform; } for (int s = 0; s < GrDrawState::kNumStages; ++s) { StageUniLocations& locations = programData->fUniLocations.fStages[s]; if (fProgramDesc.fStages[s].isEnabled()) { if (kUseUniform == locations.fTextureMatrixUni) { GrStringBuilder texMName; tex_matrix_name(s, &texMName); GR_GL_CALL_RET(gl, locations.fTextureMatrixUni, GetUniformLocation(progID, texMName.c_str())); GrAssert(kUnusedUniform != locations.fTextureMatrixUni); } if (kUseUniform == locations.fSamplerUni) { GrStringBuilder samplerName; sampler_name(s, &samplerName); GR_GL_CALL_RET(gl, locations.fSamplerUni, GetUniformLocation(progID,samplerName.c_str())); GrAssert(kUnusedUniform != locations.fSamplerUni); } if (kUseUniform == locations.fNormalizedTexelSizeUni) { GrStringBuilder texelSizeName; normalized_texel_size_name(s, &texelSizeName); GR_GL_CALL_RET(gl, locations.fNormalizedTexelSizeUni, GetUniformLocation(progID, texelSizeName.c_str())); GrAssert(kUnusedUniform != locations.fNormalizedTexelSizeUni); } if (kUseUniform == locations.fRadial2Uni) { GrStringBuilder radial2ParamName; radial2_param_name(s, &radial2ParamName); GR_GL_CALL_RET(gl, locations.fRadial2Uni, GetUniformLocation(progID, radial2ParamName.c_str())); GrAssert(kUnusedUniform != locations.fRadial2Uni); } if (kUseUniform == locations.fTexDomUni) { GrStringBuilder texDomName; tex_domain_name(s, &texDomName); GR_GL_CALL_RET(gl, locations.fTexDomUni, GetUniformLocation(progID, texDomName.c_str())); GrAssert(kUnusedUniform != locations.fTexDomUni); } GrStringBuilder kernelName, imageIncrementName; convolve_param_names(s, &kernelName, &imageIncrementName); if (kUseUniform == locations.fKernelUni) { GR_GL_CALL_RET(gl, locations.fKernelUni, GetUniformLocation(progID, kernelName.c_str())); GrAssert(kUnusedUniform != locations.fKernelUni); } if (kUseUniform == locations.fImageIncrementUni) { GR_GL_CALL_RET(gl, locations.fImageIncrementUni, GetUniformLocation(progID, imageIncrementName.c_str())); GrAssert(kUnusedUniform != locations.fImageIncrementUni); } } } GR_GL_CALL(gl, UseProgram(progID)); // init sampler unis and set bogus values for state tracking for (int s = 0; s < GrDrawState::kNumStages; ++s) { if (kUnusedUniform != programData->fUniLocations.fStages[s].fSamplerUni) { GR_GL_CALL(gl, Uniform1i(programData->fUniLocations.fStages[s].fSamplerUni, s)); } programData->fTextureMatrices[s] = GrMatrix::InvalidMatrix(); programData->fRadial2CenterX1[s] = GR_ScalarMax; programData->fRadial2Radius0[s] = -GR_ScalarMax; programData->fTextureWidth[s] = -1; programData->fTextureHeight[s] = -1; } programData->fViewMatrix = GrMatrix::InvalidMatrix(); programData->fColor = GrColor_ILLEGAL; programData->fColorFilterColor = GrColor_ILLEGAL; } //============================================================================ // Stage code generation //============================================================================ namespace { bool isRadialMapping(GrGLProgram::StageDesc::CoordMapping mapping) { return (GrGLProgram::StageDesc::kRadial2Gradient_CoordMapping == mapping || GrGLProgram::StageDesc::kRadial2GradientDegenerate_CoordMapping == mapping); } const char* genRadialVS(int stageNum, ShaderCodeSegments* segments, GrGLProgram::StageUniLocations* locations, const char** radial2VaryingVSName, const char** radial2VaryingFSName, const char* varyingVSName, int varyingDims, int coordDims) { GrGLShaderVar* radial2FSParams = &segments->fFSUnis.push_back(); radial2FSParams->setType(GrGLShaderVar::kFloat_Type); radial2FSParams->setArrayCount(6); radial2_param_name(stageNum, radial2FSParams->accessName()); segments->fVSUnis.push_back(*radial2FSParams).setEmitPrecision(true); locations->fRadial2Uni = kUseUniform; // for radial grads without perspective we can pass the linear // part of the quadratic as a varying. if (varyingDims == coordDims) { GrAssert(2 == coordDims); append_varying(GrGLShaderVar::kFloat_Type, "Radial2BCoeff", stageNum, segments, radial2VaryingVSName, radial2VaryingFSName); // r2Var = 2 * (r2Parm[2] * varCoord.x - r2Param[3]) const char* r2ParamName = radial2FSParams->getName().c_str(); segments->fVSCode.appendf("\t%s = 2.0 *(%s[2] * %s.x - %s[3]);\n", *radial2VaryingVSName, r2ParamName, varyingVSName, r2ParamName); } return radial2FSParams->getName().c_str(); } bool genRadial2GradientCoordMapping(int stageNum, ShaderCodeSegments* segments, const char* radial2VaryingFSName, const char* radial2ParamsName, GrStringBuilder& sampleCoords, GrStringBuilder& fsCoordName, int varyingDims, int coordDims) { GrStringBuilder cName("c"); GrStringBuilder ac4Name("ac4"); GrStringBuilder rootName("root"); cName.appendS32(stageNum); ac4Name.appendS32(stageNum); rootName.appendS32(stageNum); // if we were able to interpolate the linear component bVar is the varying // otherwise compute it GrStringBuilder bVar; if (coordDims == varyingDims) { bVar = radial2VaryingFSName; GrAssert(2 == varyingDims); } else { GrAssert(3 == varyingDims); bVar = "b"; bVar.appendS32(stageNum); segments->fFSCode.appendf("\tfloat %s = 2.0 * (%s[2] * %s.x - %s[3]);\n", bVar.c_str(), radial2ParamsName, fsCoordName.c_str(), radial2ParamsName); } // c = (x^2)+(y^2) - params[4] segments->fFSCode.appendf("\tfloat %s = dot(%s, %s) - %s[4];\n", cName.c_str(), fsCoordName.c_str(), fsCoordName.c_str(), radial2ParamsName); // ac4 = 4.0 * params[0] * c segments->fFSCode.appendf("\tfloat %s = %s[0] * 4.0 * %s;\n", ac4Name.c_str(), radial2ParamsName, cName.c_str()); // root = sqrt(b^2-4ac) // (abs to avoid exception due to fp precision) segments->fFSCode.appendf("\tfloat %s = sqrt(abs(%s*%s - %s));\n", rootName.c_str(), bVar.c_str(), bVar.c_str(), ac4Name.c_str()); // x coord is: (-b + params[5] * sqrt(b^2-4ac)) * params[1] // y coord is 0.5 (texture is effectively 1D) sampleCoords.printf("vec2((-%s + %s[5] * %s) * %s[1], 0.5)", bVar.c_str(), radial2ParamsName, rootName.c_str(), radial2ParamsName); return true; } bool genRadial2GradientDegenerateCoordMapping(int stageNum, ShaderCodeSegments* segments, const char* radial2VaryingFSName, const char* radial2ParamsName, GrStringBuilder& sampleCoords, GrStringBuilder& fsCoordName, int varyingDims, int coordDims) { GrStringBuilder cName("c"); cName.appendS32(stageNum); // if we were able to interpolate the linear component bVar is the varying // otherwise compute it GrStringBuilder bVar; if (coordDims == varyingDims) { bVar = radial2VaryingFSName; GrAssert(2 == varyingDims); } else { GrAssert(3 == varyingDims); bVar = "b"; bVar.appendS32(stageNum); segments->fFSCode.appendf("\tfloat %s = 2.0 * (%s[2] * %s.x - %s[3]);\n", bVar.c_str(), radial2ParamsName, fsCoordName.c_str(), radial2ParamsName); } // c = (x^2)+(y^2) - params[4] segments->fFSCode.appendf("\tfloat %s = dot(%s, %s) - %s[4];\n", cName.c_str(), fsCoordName.c_str(), fsCoordName.c_str(), radial2ParamsName); // x coord is: -c/b // y coord is 0.5 (texture is effectively 1D) sampleCoords.printf("vec2((-%s / %s), 0.5)", cName.c_str(), bVar.c_str()); return true; } void gen2x2FS(int stageNum, ShaderCodeSegments* segments, GrGLProgram::StageUniLocations* locations, GrStringBuilder* sampleCoords, const char* samplerName, const char* texelSizeName, const char* swizzle, const char* fsOutColor, GrStringBuilder& texFunc, GrStringBuilder& modulate, bool complexCoord, int coordDims) { locations->fNormalizedTexelSizeUni = kUseUniform; if (complexCoord) { // assign the coord to a var rather than compute 4x. GrStringBuilder coordVar("tCoord"); coordVar.appendS32(stageNum); segments->fFSCode.appendf("\t%s %s = %s;\n", float_vector_type_str(coordDims), coordVar.c_str(), sampleCoords->c_str()); *sampleCoords = coordVar; } GrAssert(2 == coordDims); GrStringBuilder accumVar("accum"); accumVar.appendS32(stageNum); segments->fFSCode.appendf("\tvec4 %s = %s(%s, %s + vec2(-%s.x,-%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle); segments->fFSCode.appendf("\t%s += %s(%s, %s + vec2(+%s.x,-%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle); segments->fFSCode.appendf("\t%s += %s(%s, %s + vec2(-%s.x,+%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle); segments->fFSCode.appendf("\t%s += %s(%s, %s + vec2(+%s.x,+%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle); segments->fFSCode.appendf("\t%s = .25 * %s%s;\n", fsOutColor, accumVar.c_str(), modulate.c_str()); } void genConvolutionVS(int stageNum, const StageDesc& desc, ShaderCodeSegments* segments, GrGLProgram::StageUniLocations* locations, const char** kernelName, const char** imageIncrementName, const char* varyingVSName) { GrGLShaderVar* kernel = &segments->fFSUnis.push_back(); kernel->setType(GrGLShaderVar::kFloat_Type); kernel->setArrayCount(desc.fKernelWidth); GrGLShaderVar* imgInc = &segments->fFSUnis.push_back(); imgInc->setType(GrGLShaderVar::kVec2f_Type); convolve_param_names(stageNum, kernel->accessName(), imgInc->accessName()); *kernelName = kernel->getName().c_str(); *imageIncrementName = imgInc->getName().c_str(); // need image increment in both VS and FS segments->fVSUnis.push_back(*imgInc).setEmitPrecision(true); locations->fKernelUni = kUseUniform; locations->fImageIncrementUni = kUseUniform; float scale = (desc.fKernelWidth - 1) * 0.5f; segments->fVSCode.appendf("\t%s -= vec2(%g, %g) * %s;\n", varyingVSName, scale, scale, *imageIncrementName); } void genConvolutionFS(int stageNum, const StageDesc& desc, ShaderCodeSegments* segments, const char* samplerName, const char* kernelName, const char* swizzle, const char* imageIncrementName, const char* fsOutColor, GrStringBuilder& sampleCoords, GrStringBuilder& texFunc, GrStringBuilder& modulate) { GrStringBuilder sumVar("sum"); sumVar.appendS32(stageNum); GrStringBuilder coordVar("coord"); coordVar.appendS32(stageNum); segments->fFSCode.appendf("\tvec4 %s = vec4(0, 0, 0, 0);\n", sumVar.c_str()); segments->fFSCode.appendf("\tvec2 %s = %s;\n", coordVar.c_str(), sampleCoords.c_str()); segments->fFSCode.appendf("\tfor (int i = 0; i < %d; i++) {\n", desc.fKernelWidth); segments->fFSCode.appendf("\t\t%s += %s(%s, %s)%s * %s[i];\n", sumVar.c_str(), texFunc.c_str(), samplerName, coordVar.c_str(), swizzle, kernelName); segments->fFSCode.appendf("\t\t%s += %s;\n", coordVar.c_str(), imageIncrementName); segments->fFSCode.appendf("\t}\n"); segments->fFSCode.appendf("\t%s = %s%s;\n", fsOutColor, sumVar.c_str(), modulate.c_str()); } } void GrGLProgram::genStageCode(const GrGLInterface* gl, int stageNum, const GrGLProgram::StageDesc& desc, const char* fsInColor, // NULL means no incoming color const char* fsOutColor, const char* vsInCoord, ShaderCodeSegments* segments, StageUniLocations* locations) const { GrAssert(stageNum >= 0 && stageNum <= 9); // First decide how many coords are needed to access the texture // Right now it's always 2 but we could start using 1D textures for // gradients. static const int coordDims = 2; int varyingDims; /// Vertex Shader Stuff // decide whether we need a matrix to transform texture coords // and whether the varying needs a perspective coord. const char* matName = NULL; if (desc.fOptFlags & StageDesc::kIdentityMatrix_OptFlagBit) { varyingDims = coordDims; } else { GrGLShaderVar* mat; #if GR_GL_ATTRIBUTE_MATRICES mat = &segments->fVSAttrs.push_back(); locations->fTextureMatrixUni = kSetAsAttribute; #else mat = &segments->fVSUnis.push_back(); locations->fTextureMatrixUni = kUseUniform; #endif tex_matrix_name(stageNum, mat->accessName()); mat->setType(GrGLShaderVar::kMat33f_Type); matName = mat->getName().c_str(); if (desc.fOptFlags & StageDesc::kNoPerspective_OptFlagBit) { varyingDims = coordDims; } else { varyingDims = coordDims + 1; } } segments->fFSUnis.push_back().setType(GrGLShaderVar::kSampler2D_Type); sampler_name(stageNum, segments->fFSUnis.back().accessName()); locations->fSamplerUni = kUseUniform; const char* samplerName = segments->fFSUnis.back().getName().c_str(); const char* texelSizeName = NULL; if (StageDesc::k2x2_FetchMode == desc.fFetchMode) { segments->fFSUnis.push_back().setType(GrGLShaderVar::kVec2f_Type); normalized_texel_size_name(stageNum, segments->fFSUnis.back().accessName()); texelSizeName = segments->fFSUnis.back().getName().c_str(); } const char *varyingVSName, *varyingFSName; append_varying(float_vector_type(varyingDims), "Stage", stageNum, segments, &varyingVSName, &varyingFSName); if (!matName) { GrAssert(varyingDims == coordDims); segments->fVSCode.appendf("\t%s = %s;\n", varyingVSName, vsInCoord); } else { // varying = texMatrix * texCoord segments->fVSCode.appendf("\t%s = (%s * vec3(%s, 1))%s;\n", varyingVSName, matName, vsInCoord, vector_all_coords(varyingDims)); } const char* radial2ParamsName = NULL; const char *radial2VaryingVSName = NULL; const char *radial2VaryingFSName = NULL; if (isRadialMapping((StageDesc::CoordMapping) desc.fCoordMapping)) { radial2ParamsName = genRadialVS(stageNum, segments, locations, &radial2VaryingVSName, &radial2VaryingFSName, varyingVSName, varyingDims, coordDims); } const char* kernelName = NULL; const char* imageIncrementName = NULL; if (StageDesc::kConvolution_FetchMode == desc.fFetchMode) { genConvolutionVS(stageNum, desc, segments, locations, &kernelName, &imageIncrementName, varyingVSName); } /// Fragment Shader Stuff GrStringBuilder fsCoordName; // function used to access the shader, may be made projective GrStringBuilder texFunc("texture2D"); if (desc.fOptFlags & (StageDesc::kIdentityMatrix_OptFlagBit | StageDesc::kNoPerspective_OptFlagBit)) { GrAssert(varyingDims == coordDims); fsCoordName = varyingFSName; } else { // if we have to do some special op on the varyings to get // our final tex coords then when in perspective we have to // do an explicit divide. Otherwise, we can use a Proj func. if (StageDesc::kIdentity_CoordMapping == desc.fCoordMapping && StageDesc::kSingle_FetchMode == desc.fFetchMode) { texFunc.append("Proj"); fsCoordName = varyingFSName; } else { fsCoordName = "inCoord"; fsCoordName.appendS32(stageNum); segments->fFSCode.appendf("\t%s %s = %s%s / %s%s;\n", GrGLShaderVar::TypeString(float_vector_type(coordDims)), fsCoordName.c_str(), varyingFSName, vector_nonhomog_coords(varyingDims), varyingFSName, vector_homog_coord(varyingDims)); } } GrStringBuilder sampleCoords; bool complexCoord = false; switch (desc.fCoordMapping) { case StageDesc::kIdentity_CoordMapping: sampleCoords = fsCoordName; break; case StageDesc::kSweepGradient_CoordMapping: sampleCoords.printf("vec2(atan(- %s.y, - %s.x) * 0.1591549430918 + 0.5, 0.5)", fsCoordName.c_str(), fsCoordName.c_str()); complexCoord = true; break; case StageDesc::kRadialGradient_CoordMapping: sampleCoords.printf("vec2(length(%s.xy), 0.5)", fsCoordName.c_str()); complexCoord = true; break; case StageDesc::kRadial2Gradient_CoordMapping: complexCoord = genRadial2GradientCoordMapping( stageNum, segments, radial2VaryingFSName, radial2ParamsName, sampleCoords, fsCoordName, varyingDims, coordDims); break; case StageDesc::kRadial2GradientDegenerate_CoordMapping: complexCoord = genRadial2GradientDegenerateCoordMapping( stageNum, segments, radial2VaryingFSName, radial2ParamsName, sampleCoords, fsCoordName, varyingDims, coordDims); break; }; const char* swizzle; switch (desc.fSwizzle) { case StageDesc::kAlphaSmear_Swizzle: swizzle = ".aaaa"; break; case StageDesc::kSwapRAndB_Swizzle: swizzle = ".bgra"; break; case StageDesc::kNone_Swizzle: swizzle = ""; break; } GrStringBuilder modulate; if (NULL != fsInColor) { modulate.printf(" * %s", fsInColor); } if (desc.fOptFlags & StageDesc::kCustomTextureDomain_OptFlagBit) { GrStringBuilder texDomainName; tex_domain_name(stageNum, &texDomainName); segments->fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type, texDomainName); GrStringBuilder coordVar("clampCoord"); segments->fFSCode.appendf("\t%s %s = clamp(%s, %s.xy, %s.zw);\n", float_vector_type_str(coordDims), coordVar.c_str(), sampleCoords.c_str(), texDomainName.c_str(), texDomainName.c_str()); sampleCoords = coordVar; locations->fTexDomUni = kUseUniform; } switch (desc.fFetchMode) { case StageDesc::k2x2_FetchMode: gen2x2FS(stageNum, segments, locations, &sampleCoords, samplerName, texelSizeName, swizzle, fsOutColor, texFunc, modulate, complexCoord, coordDims); break; case StageDesc::kConvolution_FetchMode: genConvolutionFS(stageNum, desc, segments, samplerName, kernelName, swizzle, imageIncrementName, fsOutColor, sampleCoords, texFunc, modulate); break; default: segments->fFSCode.appendf("\t%s = %s(%s, %s)%s%s;\n", fsOutColor, texFunc.c_str(), samplerName, sampleCoords.c_str(), swizzle, modulate.c_str()); } }