/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrDrawState_DEFINED #define GrDrawState_DEFINED #include "GrBackendEffectFactory.h" #include "GrColor.h" #include "GrEffectStage.h" #include "GrRefCnt.h" #include "GrRenderTarget.h" #include "GrStencil.h" #include "GrTemplates.h" #include "GrTexture.h" #include "effects/GrSimpleTextureEffect.h" #include "SkMatrix.h" #include "SkXfermode.h" class GrPaint; /** * Types used to describe format of vertices in arrays */ enum GrVertexAttribType { kFloat_GrVertexAttribType = 0, kVec2f_GrVertexAttribType, kVec3f_GrVertexAttribType, kVec4f_GrVertexAttribType, kVec4ub_GrVertexAttribType, // vector of 4 unsigned bytes, e.g. colors kLast_GrVertexAttribType = kVec4ub_GrVertexAttribType }; static const int kGrVertexAttribTypeCount = kLast_GrVertexAttribType + 1; struct GrVertexAttrib { inline void set(GrVertexAttribType type, size_t offset) { fType = type; fOffset = offset; } bool operator==(const GrVertexAttrib& other) const { return fType == other.fType && fOffset == other.fOffset; }; bool operator!=(const GrVertexAttrib& other) const { return !(*this == other); } GrVertexAttribType fType; size_t fOffset; }; template class GrVertexAttribArray : public SkSTArray {}; /** * Type used to describe how attributes bind to program usage */ typedef int GrAttribBindings; class GrDrawState : public GrRefCnt { public: SK_DECLARE_INST_COUNT(GrDrawState) /** * Total number of effect stages. Each stage can host a GrEffect. A stage is enabled if it has a * GrEffect. The effect produces an output color in the fragment shader. It's inputs are the * output from the previous enabled stage and a position. The position is either derived from * the interpolated vertex positions or explicit per-vertex coords, depending upon the * GrAttribBindings used to draw. * * The stages are divided into two sets, color-computing and coverage-computing. The final color * stage produces the final pixel color. The coverage-computing stages function exactly as the * color-computing but the output of the final coverage stage is treated as a fractional pixel * coverage rather than as input to the src/dst color blend step. * * The input color to the first enabled color-stage is either the constant color or interpolated * per-vertex colors, depending upon GrAttribBindings. The input to the first coverage stage is * either a constant coverage (usually full-coverage), interpolated per-vertex coverage, or * edge-AA computed coverage. (This latter is going away as soon as it can be rewritten as a * GrEffect). * * See the documentation of kCoverageDrawing_StateBit for information about disabling the * the color / coverage distinction. * * Stages 0 through GrPaint::kTotalStages-1 are reserved for stages copied from the client's * GrPaint. Stages GrPaint::kTotalStages through kNumStages-2 are earmarked for use by * GrTextContext and GrPathRenderer-derived classes. kNumStages-1 is earmarked for clipping * by GrClipMaskManager. */ enum { kNumStages = 5, }; GrDrawState() { #if GR_DEBUG VertexAttributesUnitTest(); #endif this->reset(); } GrDrawState(const GrDrawState& state) { *this = state; } virtual ~GrDrawState() { this->disableStages(); } /** * Resets to the default state. * GrEffects will be removed from all stages. */ void reset() { this->disableStages(); fRenderTarget.reset(NULL); this->setDefaultVertexAttribs(); fCommon.fColor = 0xffffffff; fCommon.fViewMatrix.reset(); fCommon.fSrcBlend = kOne_GrBlendCoeff; fCommon.fDstBlend = kZero_GrBlendCoeff; fCommon.fBlendConstant = 0x0; fCommon.fFlagBits = 0x0; fCommon.fVertexEdgeType = kHairLine_EdgeType; fCommon.fStencilSettings.setDisabled(); fCommon.fFirstCoverageStage = kNumStages; fCommon.fCoverage = 0xffffffff; fCommon.fColorFilterMode = SkXfermode::kDst_Mode; fCommon.fColorFilterColor = 0x0; fCommon.fDrawFace = kBoth_DrawFace; } /** * Initializes the GrDrawState based on a GrPaint. Note that GrDrawState * encompasses more than GrPaint. Aspects of GrDrawState that have no * GrPaint equivalents are not modified. GrPaint has fewer stages than * GrDrawState. The extra GrDrawState stages are disabled. */ void setFromPaint(const GrPaint& paint); /////////////////////////////////////////////////////////////////////////// /// @name Vertex Attributes //// enum { kVertexAttribCnt = 6, }; /** * The format of vertices is represented as an array of vertex attribute * pair, with each pair representing the type of the attribute and the * offset in the vertex structure (see GrVertexAttrib, above). * * This will only set up the vertex geometry. To bind the attributes in * the shaders, attribute indices and attribute bindings need to be set * as well. */ /** * Sets vertex attributes for next draw. * * @param attribs the array of vertex attributes to set. * @param count the number of attributes being set. * limited to a count of kVertexAttribCnt. */ void setVertexAttribs(const GrVertexAttrib attribs[], int count); const GrVertexAttrib* getVertexAttribs() const { return fVertexAttribs.begin(); } int getVertexAttribCount() const { return fVertexAttribs.count(); } size_t getVertexSize() const; /** * Sets default vertex attributes for next draw. * * This will also set default vertex attribute indices and bindings */ void setDefaultVertexAttribs(); //////////////////////////////////////////////////////////////////////////// // Helpers for picking apart vertex attributes // helper array to let us check the expected so we know what bound attrib indices // we care about static const size_t kVertexAttribSizes[kGrVertexAttribTypeCount]; /** * Accessing positions, texture coords, or colors, of a vertex within an * array is a hassle involving casts and simple math. These helpers exist * to keep GrDrawTarget clients' code a bit nicer looking. */ /** * Gets a pointer to a GrPoint of a vertex's position or texture * coordinate. * @param vertices the vertex array * @param vertexIndex the index of the vertex in the array * @param vertexSize the size of each vertex in the array * @param offset the offset in bytes of the vertex component. * Defaults to zero (corresponding to vertex position) * @return pointer to the vertex component as a GrPoint */ static GrPoint* GetVertexPoint(void* vertices, int vertexIndex, int vertexSize, int offset = 0) { intptr_t start = GrTCast(vertices); return GrTCast(start + offset + vertexIndex * vertexSize); } static const GrPoint* GetVertexPoint(const void* vertices, int vertexIndex, int vertexSize, int offset = 0) { intptr_t start = GrTCast(vertices); return GrTCast(start + offset + vertexIndex * vertexSize); } /** * Gets a pointer to a GrColor inside a vertex within a vertex array. * @param vertices the vetex array * @param vertexIndex the index of the vertex in the array * @param vertexSize the size of each vertex in the array * @param offset the offset in bytes of the vertex color * @return pointer to the vertex component as a GrColor */ static GrColor* GetVertexColor(void* vertices, int vertexIndex, int vertexSize, int offset) { intptr_t start = GrTCast(vertices); return GrTCast(start + offset + vertexIndex * vertexSize); } static const GrColor* GetVertexColor(const void* vertices, int vertexIndex, int vertexSize, int offset) { const intptr_t start = GrTCast(vertices); return GrTCast(start + offset + vertexIndex * vertexSize); } /// @} /////////////////////////////////////////////////////////////////////////// /// @name Attribute Bindings //// /** * The vertex data used by the current program is represented as a bitfield * of flags. Programs always use positions and may also use texture * coordinates, per-vertex colors, per-vertex coverage and edge data. Each * stage can use the explicit texture coordinates as its input texture * coordinates or it may use the positions as texture coordinates. */ /** * Generates a bit indicating that a texture stage uses texture coordinates * * @param stageIdx the stage that will use texture coordinates. * * @return the bit to add to a GrAttribBindings bitfield. */ static int ExplicitTexCoordAttribBindingsBit(int stageIdx) { GrAssert(stageIdx < kNumStages); return (1 << stageIdx); } static bool StageBindsExplicitTexCoords(GrAttribBindings bindings, int stageIdx); /** * Additional Bits that can be specified in GrAttribBindings. */ enum AttribBindingsBits { /* program uses colors (GrColor) */ kColor_AttribBindingsBit = 1 << (kNumStages + 0), /* program uses coverage (GrColor) */ kCoverage_AttribBindingsBit = 1 << (kNumStages + 1), /* program uses edge data. Distance to the edge is used to * compute a coverage. See GrDrawState::setVertexEdgeType(). */ kEdge_AttribBindingsBit = 1 << (kNumStages + 2), // for below assert kDummyAttribBindingsBit, kHighAttribBindingsBit = kDummyAttribBindingsBit - 1 }; // make sure we haven't exceeded the number of bits in GrAttribBindings. GR_STATIC_ASSERT(kHighAttribBindingsBit < ((uint64_t)1 << 8*sizeof(GrAttribBindings))); enum AttribBindings { kDefault_AttribBindings = 0 }; /** * Sets attribute bindings for next draw. * * @param bindings the attribute bindings to set. */ void setAttribBindings(GrAttribBindings bindings) { fCommon.fAttribBindings = bindings; } GrAttribBindings getAttribBindings() const { return fCommon.fAttribBindings; } //////////////////////////////////////////////////////////////////////////// // Helpers for picking apart attribute bindings /** * Helper function to determine if program uses explicit texture * coordinates. * * @param bindings attribute bindings to query * * @return true if program uses texture coordinates, * false otherwise. */ static bool AttributesBindExplicitTexCoords(GrAttribBindings bindings); /** * Determines whether src alpha is guaranteed to be one for all src pixels */ bool srcAlphaWillBeOne(GrAttribBindings) const; /** * Determines whether the output coverage is guaranteed to be one for all pixels hit by a draw. */ bool hasSolidCoverage(GrAttribBindings) const; static void VertexAttributesUnitTest(); /// @} /////////////////////////////////////////////////////////////////////////// /// @name Vertex Attribute Indices //// /** * Vertex attribute indices map the data set in the vertex attribute array * to the bindings specified in the attribute bindings. Each binding type * has an associated index in the attribute array. This index is used to * look up the vertex attribute data from the array, and potentially as the * attribute index if we're binding attributes in GL. * * Indices which do not have active attribute bindings will be ignored. */ enum AttribIndex { kPosition_AttribIndex = 0, kColor_AttribIndex, kCoverage_AttribIndex, kEdge_AttribIndex, kTexCoord_AttribIndex, kLast_AttribIndex = kTexCoord_AttribIndex }; static const int kAttribIndexCount = kLast_AttribIndex + 1; // these are used when vertex color and coverage isn't set enum { kColorOverrideAttribIndexValue = GrDrawState::kVertexAttribCnt, kCoverageOverrideAttribIndexValue = GrDrawState::kVertexAttribCnt+1, }; //////////////////////////////////////////////////////////////////////////// // Helpers to set attribute indices. These should match the index in the // current attribute index array. /** * Sets index for next draw. This is used to look up the offset * from the current vertex attribute array and to bind the attributes. * * @param index the attribute index we're setting * @param value the value of the index */ void setAttribIndex(AttribIndex index, int value) { fAttribIndices[index] = value; } int getAttribIndex(AttribIndex index) const { return fAttribIndices[index]; } /// @} /////////////////////////////////////////////////////////////////////////// /// @name Color //// /** * Sets color for next draw to a premultiplied-alpha color. * * @param color the color to set. */ void setColor(GrColor color) { fCommon.fColor = color; } GrColor getColor() const { return fCommon.fColor; } /** * Sets the color to be used for the next draw to be * (r,g,b,a) = (alpha, alpha, alpha, alpha). * * @param alpha The alpha value to set as the color. */ void setAlpha(uint8_t a) { this->setColor((a << 24) | (a << 16) | (a << 8) | a); } /** * Add a color filter that can be represented by a color and a mode. Applied * after color-computing texture stages. */ void setColorFilter(GrColor c, SkXfermode::Mode mode) { fCommon.fColorFilterColor = c; fCommon.fColorFilterMode = mode; } GrColor getColorFilterColor() const { return fCommon.fColorFilterColor; } SkXfermode::Mode getColorFilterMode() const { return fCommon.fColorFilterMode; } /** * Constructor sets the color to be 'color' which is undone by the destructor. */ class AutoColorRestore : public ::GrNoncopyable { public: AutoColorRestore() : fDrawState(NULL) {} AutoColorRestore(GrDrawState* drawState, GrColor color) { fDrawState = NULL; this->set(drawState, color); } void reset() { if (NULL != fDrawState) { fDrawState->setColor(fOldColor); fDrawState = NULL; } } void set(GrDrawState* drawState, GrColor color) { this->reset(); fDrawState = drawState; fOldColor = fDrawState->getColor(); fDrawState->setColor(color); } ~AutoColorRestore() { this->reset(); } private: GrDrawState* fDrawState; GrColor fOldColor; }; /// @} /////////////////////////////////////////////////////////////////////////// /// @name Coverage //// /** * Sets a constant fractional coverage to be applied to the draw. The * initial value (after construction or reset()) is 0xff. The constant * coverage is ignored when per-vertex coverage is provided. */ void setCoverage(uint8_t coverage) { fCommon.fCoverage = GrColorPackRGBA(coverage, coverage, coverage, coverage); } /** * Version of above that specifies 4 channel per-vertex color. The value * should be premultiplied. */ void setCoverage4(GrColor coverage) { fCommon.fCoverage = coverage; } GrColor getCoverage() const { return fCommon.fCoverage; } /// @} /////////////////////////////////////////////////////////////////////////// /// @name Effect Stages //// const GrEffectRef* setEffect(int stageIdx, const GrEffectRef* effect) { fStages[stageIdx].setEffect(effect); return effect; } /** * Creates a GrSimpleTextureEffect. */ void createTextureEffect(int stageIdx, GrTexture* texture, const SkMatrix& matrix) { GrAssert(!this->getStage(stageIdx).getEffect()); GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix); this->setEffect(stageIdx, effect)->unref(); } void createTextureEffect(int stageIdx, GrTexture* texture, const SkMatrix& matrix, const GrTextureParams& params) { GrAssert(!this->getStage(stageIdx).getEffect()); GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix, params); this->setEffect(stageIdx, effect)->unref(); } bool stagesDisabled() { for (int i = 0; i < kNumStages; ++i) { if (NULL != fStages[i].getEffect()) { return false; } } return true; } void disableStage(int stageIdx) { this->setEffect(stageIdx, NULL); } /** * Release all the GrEffects referred to by this draw state. */ void disableStages() { for (int i = 0; i < kNumStages; ++i) { this->disableStage(i); } } class AutoStageDisable : public ::GrNoncopyable { public: AutoStageDisable(GrDrawState* ds) : fDrawState(ds) {} ~AutoStageDisable() { if (NULL != fDrawState) { fDrawState->disableStages(); } } private: GrDrawState* fDrawState; }; /** * Returns the current stage by index. */ const GrEffectStage& getStage(int stageIdx) const { GrAssert((unsigned)stageIdx < kNumStages); return fStages[stageIdx]; } /** * Called when the source coord system is changing. preConcat gives the transformation from the * old coord system to the new coord system. */ void preConcatStageMatrices(const SkMatrix& preConcat) { this->preConcatStageMatrices(~0U, preConcat); } /** * Version of above that applies the update matrix selectively to stages via a mask. */ void preConcatStageMatrices(uint32_t stageMask, const SkMatrix& preConcat) { for (int i = 0; i < kNumStages; ++i) { if (((1 << i) & stageMask) && this->isStageEnabled(i)) { fStages[i].preConcatCoordChange(preConcat); } } } /** * Called when the source coord system is changing. preConcatInverse is the inverse of the * transformation from the old coord system to the new coord system. Returns false if the matrix * cannot be inverted. */ bool preConcatStageMatricesWithInverse(const SkMatrix& preConcatInverse) { SkMatrix inv; bool computed = false; for (int i = 0; i < kNumStages; ++i) { if (this->isStageEnabled(i)) { if (!computed && !preConcatInverse.invert(&inv)) { return false; } else { computed = true; } fStages[i].preConcatCoordChange(preConcatInverse); } } return true; } /// @} /////////////////////////////////////////////////////////////////////////// /// @name Coverage / Color Stages //// /** * A common pattern is to compute a color with the initial stages and then * modulate that color by a coverage value in later stage(s) (AA, mask- * filters, glyph mask, etc). Color-filters, xfermodes, etc should be * computed based on the pre-coverage-modulated color. The division of * stages between color-computing and coverage-computing is specified by * this method. Initially this is kNumStages (all stages * are color-computing). */ void setFirstCoverageStage(int firstCoverageStage) { GrAssert((unsigned)firstCoverageStage <= kNumStages); fCommon.fFirstCoverageStage = firstCoverageStage; } /** * Gets the index of the first coverage-computing stage. */ int getFirstCoverageStage() const { return fCommon.fFirstCoverageStage; } ///@} /////////////////////////////////////////////////////////////////////////// /// @name Blending //// /** * Sets the blending function coefficients. * * The blend function will be: * D' = sat(S*srcCoef + D*dstCoef) * * where D is the existing destination color, S is the incoming source * color, and D' is the new destination color that will be written. sat() * is the saturation function. * * @param srcCoef coefficient applied to the src color. * @param dstCoef coefficient applied to the dst color. */ void setBlendFunc(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) { fCommon.fSrcBlend = srcCoeff; fCommon.fDstBlend = dstCoeff; #if GR_DEBUG switch (dstCoeff) { case kDC_GrBlendCoeff: case kIDC_GrBlendCoeff: case kDA_GrBlendCoeff: case kIDA_GrBlendCoeff: GrPrintf("Unexpected dst blend coeff. Won't work correctly with" "coverage stages.\n"); break; default: break; } switch (srcCoeff) { case kSC_GrBlendCoeff: case kISC_GrBlendCoeff: case kSA_GrBlendCoeff: case kISA_GrBlendCoeff: GrPrintf("Unexpected src blend coeff. Won't work correctly with" "coverage stages.\n"); break; default: break; } #endif } GrBlendCoeff getSrcBlendCoeff() const { return fCommon.fSrcBlend; } GrBlendCoeff getDstBlendCoeff() const { return fCommon.fDstBlend; } void getDstBlendCoeff(GrBlendCoeff* srcBlendCoeff, GrBlendCoeff* dstBlendCoeff) const { *srcBlendCoeff = fCommon.fSrcBlend; *dstBlendCoeff = fCommon.fDstBlend; } /** * Sets the blending function constant referenced by the following blending * coefficients: * kConstC_GrBlendCoeff * kIConstC_GrBlendCoeff * kConstA_GrBlendCoeff * kIConstA_GrBlendCoeff * * @param constant the constant to set */ void setBlendConstant(GrColor constant) { fCommon.fBlendConstant = constant; } /** * Retrieves the last value set by setBlendConstant() * @return the blending constant value */ GrColor getBlendConstant() const { return fCommon.fBlendConstant; } /** * Determines whether multiplying the computed per-pixel color by the pixel's fractional * coverage before the blend will give the correct final destination color. In general it * will not as coverage is applied after blending. */ bool canTweakAlphaForCoverage() const; /** * Optimizations for blending / coverage to that can be applied based on the current state. */ enum BlendOptFlags { /** * No optimization */ kNone_BlendOpt = 0, /** * Don't draw at all */ kSkipDraw_BlendOptFlag = 0x1, /** * Emit the src color, disable HW blending (replace dst with src) */ kDisableBlend_BlendOptFlag = 0x2, /** * The coverage value does not have to be computed separately from alpha, the the output * color can be the modulation of the two. */ kCoverageAsAlpha_BlendOptFlag = 0x4, /** * Instead of emitting a src color, emit coverage in the alpha channel and r,g,b are * "don't cares". */ kEmitCoverage_BlendOptFlag = 0x8, /** * Emit transparent black instead of the src color, no need to compute coverage. */ kEmitTransBlack_BlendOptFlag = 0x10, }; GR_DECL_BITFIELD_OPS_FRIENDS(BlendOptFlags); /** * Determines what optimizations can be applied based on the blend. The coefficients may have * to be tweaked in order for the optimization to work. srcCoeff and dstCoeff are optional * params that receive the tweaked coefficients. Normally the function looks at the current * state to see if coverage is enabled. By setting forceCoverage the caller can speculatively * determine the blend optimizations that would be used if there was partial pixel coverage. * * Subclasses of GrDrawTarget that actually draw (as opposed to those that just buffer for * playback) must call this function and respect the flags that replace the output color. */ BlendOptFlags getBlendOpts(bool forceCoverage = false, GrBlendCoeff* srcCoeff = NULL, GrBlendCoeff* dstCoeff = NULL) const; /// @} /////////////////////////////////////////////////////////////////////////// /// @name View Matrix //// /** * Sets the matrix applied to vertex positions. * * In the post-view-matrix space the rectangle [0,w]x[0,h] * fully covers the render target. (w and h are the width and height of the * the render-target.) */ void setViewMatrix(const SkMatrix& m) { fCommon.fViewMatrix = m; } /** * Gets a writable pointer to the view matrix. */ SkMatrix* viewMatrix() { return &fCommon.fViewMatrix; } /** * Multiplies the current view matrix by a matrix * * After this call V' = V*m where V is the old view matrix, * m is the parameter to this function, and V' is the new view matrix. * (We consider positions to be column vectors so position vector p is * transformed by matrix X as p' = X*p.) * * @param m the matrix used to modify the view matrix. */ void preConcatViewMatrix(const SkMatrix& m) { fCommon.fViewMatrix.preConcat(m); } /** * Multiplies the current view matrix by a matrix * * After this call V' = m*V where V is the old view matrix, * m is the parameter to this function, and V' is the new view matrix. * (We consider positions to be column vectors so position vector p is * transformed by matrix X as p' = X*p.) * * @param m the matrix used to modify the view matrix. */ void postConcatViewMatrix(const SkMatrix& m) { fCommon.fViewMatrix.postConcat(m); } /** * Retrieves the current view matrix * @return the current view matrix. */ const SkMatrix& getViewMatrix() const { return fCommon.fViewMatrix; } /** * Retrieves the inverse of the current view matrix. * * If the current view matrix is invertible, return true, and if matrix * is non-null, copy the inverse into it. If the current view matrix is * non-invertible, return false and ignore the matrix parameter. * * @param matrix if not null, will receive a copy of the current inverse. */ bool getViewInverse(SkMatrix* matrix) const { // TODO: determine whether we really need to leave matrix unmodified // at call sites when inversion fails. SkMatrix inverse; if (fCommon.fViewMatrix.invert(&inverse)) { if (matrix) { *matrix = inverse; } return true; } return false; } //////////////////////////////////////////////////////////////////////////// /** * Preconcats the current view matrix and restores the previous view matrix in the destructor. * Effect matrices are automatically adjusted to compensate. */ class AutoViewMatrixRestore : public ::GrNoncopyable { public: AutoViewMatrixRestore() : fDrawState(NULL) {} AutoViewMatrixRestore(GrDrawState* ds, const SkMatrix& preconcatMatrix, uint32_t explicitCoordStageMask = 0) { fDrawState = NULL; this->set(ds, preconcatMatrix, explicitCoordStageMask); } ~AutoViewMatrixRestore() { this->restore(); } /** * Can be called prior to destructor to restore the original matrix. */ void restore(); void set(GrDrawState* drawState, const SkMatrix& preconcatMatrix, uint32_t explicitCoordStageMask = 0); bool isSet() const { return NULL != fDrawState; } private: GrDrawState* fDrawState; SkMatrix fViewMatrix; GrEffectStage::SavedCoordChange fSavedCoordChanges[GrDrawState::kNumStages]; uint32_t fRestoreMask; }; //////////////////////////////////////////////////////////////////////////// /** * This sets the view matrix to identity and adjusts stage matrices to compensate. The * destructor undoes the changes, restoring the view matrix that was set before the * constructor. It is similar to passing the inverse of the current view matrix to * AutoViewMatrixRestore, but lazily computes the inverse only if necessary. */ class AutoDeviceCoordDraw : ::GrNoncopyable { public: AutoDeviceCoordDraw() : fDrawState(NULL) {} /** * If a stage's texture matrix is applied to explicit per-vertex coords, rather than to * positions, then we don't want to modify its matrix. The explicitCoordStageMask is used * to specify such stages. */ AutoDeviceCoordDraw(GrDrawState* drawState, uint32_t explicitCoordStageMask = 0) { fDrawState = NULL; this->set(drawState, explicitCoordStageMask); } ~AutoDeviceCoordDraw() { this->restore(); } bool set(GrDrawState* drawState, uint32_t explicitCoordStageMask = 0); /** * Returns true if this object was successfully initialized on to a GrDrawState. It may * return false because a non-default constructor or set() were never called or because * the view matrix was not invertible. */ bool succeeded() const { return NULL != fDrawState; } /** * Returns the matrix that was set previously set on the drawState. This is only valid * if succeeded returns true. */ const SkMatrix& getOriginalMatrix() const { GrAssert(this->succeeded()); return fViewMatrix; } /** * Can be called prior to destructor to restore the original matrix. */ void restore(); private: GrDrawState* fDrawState; SkMatrix fViewMatrix; GrEffectStage::SavedCoordChange fSavedCoordChanges[GrDrawState::kNumStages]; uint32_t fRestoreMask; }; /// @} /////////////////////////////////////////////////////////////////////////// /// @name Render Target //// /** * Sets the render-target used at the next drawing call * * @param target The render target to set. */ void setRenderTarget(GrRenderTarget* target) { fRenderTarget.reset(SkSafeRef(target)); } /** * Retrieves the currently set render-target. * * @return The currently set render target. */ const GrRenderTarget* getRenderTarget() const { return fRenderTarget.get(); } GrRenderTarget* getRenderTarget() { return fRenderTarget.get(); } class AutoRenderTargetRestore : public ::GrNoncopyable { public: AutoRenderTargetRestore() : fDrawState(NULL), fSavedTarget(NULL) {} AutoRenderTargetRestore(GrDrawState* ds, GrRenderTarget* newTarget) { fDrawState = NULL; fSavedTarget = NULL; this->set(ds, newTarget); } ~AutoRenderTargetRestore() { this->restore(); } void restore() { if (NULL != fDrawState) { fDrawState->setRenderTarget(fSavedTarget); fDrawState = NULL; } GrSafeSetNull(fSavedTarget); } void set(GrDrawState* ds, GrRenderTarget* newTarget) { this->restore(); if (NULL != ds) { GrAssert(NULL == fSavedTarget); fSavedTarget = ds->getRenderTarget(); SkSafeRef(fSavedTarget); ds->setRenderTarget(newTarget); fDrawState = ds; } } private: GrDrawState* fDrawState; GrRenderTarget* fSavedTarget; }; /// @} /////////////////////////////////////////////////////////////////////////// /// @name Stencil //// /** * Sets the stencil settings to use for the next draw. * Changing the clip has the side-effect of possibly zeroing * out the client settable stencil bits. So multipass algorithms * using stencil should not change the clip between passes. * @param settings the stencil settings to use. */ void setStencil(const GrStencilSettings& settings) { fCommon.fStencilSettings = settings; } /** * Shortcut to disable stencil testing and ops. */ void disableStencil() { fCommon.fStencilSettings.setDisabled(); } const GrStencilSettings& getStencil() const { return fCommon.fStencilSettings; } GrStencilSettings* stencil() { return &fCommon.fStencilSettings; } /// @} /////////////////////////////////////////////////////////////////////////// // @name Edge AA // Edge equations can be specified to perform anti-aliasing. Because the // edges are specified as per-vertex data, vertices that are shared by // multiple edges must be split. // //// /** * When specifying edges as vertex data this enum specifies what type of * edges are in use. The edges are always 4 SkScalars in memory, even when * the edge type requires fewer than 4. * * TODO: Fix the fact that HairLine and Circle edge types use y-down coords. * (either adjust in VS or use origin_upper_left in GLSL) */ enum VertexEdgeType { /* 1-pixel wide line 2D implicit line eq (a*x + b*y +c = 0). 4th component unused */ kHairLine_EdgeType, /* Quadratic specified by u^2-v canonical coords (only 2 components used). Coverage based on signed distance with negative being inside, positive outside. Edge specified in window space (y-down) */ kQuad_EdgeType, /* Same as above but for hairline quadratics. Uses unsigned distance. Coverage is min(0, 1-distance). */ kHairQuad_EdgeType, /* Circle specified as center_x, center_y, outer_radius, inner_radius all in window space (y-down). */ kCircle_EdgeType, /* Axis-aligned ellipse specified as center_x, center_y, x_radius, x_radius/y_radius all in window space (y-down). */ kEllipse_EdgeType, kVertexEdgeTypeCnt }; /** * Determines the interpretation per-vertex edge data when the * kEdge_AttribBindingsBit is set (see GrDrawTarget). When per-vertex edges * are not specified the value of this setting has no effect. */ void setVertexEdgeType(VertexEdgeType type) { GrAssert(type >=0 && type < kVertexEdgeTypeCnt); fCommon.fVertexEdgeType = type; } VertexEdgeType getVertexEdgeType() const { return fCommon.fVertexEdgeType; } /// @} /////////////////////////////////////////////////////////////////////////// /// @name State Flags //// /** * Flags that affect rendering. Controlled using enable/disableState(). All * default to disabled. */ enum StateBits { /** * Perform dithering. TODO: Re-evaluate whether we need this bit */ kDither_StateBit = 0x01, /** * Perform HW anti-aliasing. This means either HW FSAA, if supported by the render target, * or smooth-line rendering if a line primitive is drawn and line smoothing is supported by * the 3D API. */ kHWAntialias_StateBit = 0x02, /** * Draws will respect the clip, otherwise the clip is ignored. */ kClip_StateBit = 0x04, /** * Disables writing to the color buffer. Useful when performing stencil * operations. */ kNoColorWrites_StateBit = 0x08, /** * Usually coverage is applied after color blending. The color is blended using the coeffs * specified by setBlendFunc(). The blended color is then combined with dst using coeffs * of src_coverage, 1-src_coverage. Sometimes we are explicitly drawing a coverage mask. In * this case there is no distinction between coverage and color and the caller needs direct * control over the blend coeffs. When set, there will be a single blend step controlled by * setBlendFunc() which will use coverage*color as the src color. */ kCoverageDrawing_StateBit = 0x10, // Users of the class may add additional bits to the vector kDummyStateBit, kLastPublicStateBit = kDummyStateBit-1, }; void resetStateFlags() { fCommon.fFlagBits = 0; } /** * Enable render state settings. * * @param stateBits bitfield of StateBits specifying the states to enable */ void enableState(uint32_t stateBits) { fCommon.fFlagBits |= stateBits; } /** * Disable render state settings. * * @param stateBits bitfield of StateBits specifying the states to disable */ void disableState(uint32_t stateBits) { fCommon.fFlagBits &= ~(stateBits); } /** * Enable or disable stateBits based on a boolean. * * @param stateBits bitfield of StateBits to enable or disable * @param enable if true enable stateBits, otherwise disable */ void setState(uint32_t stateBits, bool enable) { if (enable) { this->enableState(stateBits); } else { this->disableState(stateBits); } } bool isDitherState() const { return 0 != (fCommon.fFlagBits & kDither_StateBit); } bool isHWAntialiasState() const { return 0 != (fCommon.fFlagBits & kHWAntialias_StateBit); } bool isClipState() const { return 0 != (fCommon.fFlagBits & kClip_StateBit); } bool isColorWriteDisabled() const { return 0 != (fCommon.fFlagBits & kNoColorWrites_StateBit); } bool isCoverageDrawing() const { return 0 != (fCommon.fFlagBits & kCoverageDrawing_StateBit); } bool isStateFlagEnabled(uint32_t stateBit) const { return 0 != (stateBit & fCommon.fFlagBits); } /// @} /////////////////////////////////////////////////////////////////////////// /// @name Face Culling //// enum DrawFace { kInvalid_DrawFace = -1, kBoth_DrawFace, kCCW_DrawFace, kCW_DrawFace, }; /** * Controls whether clockwise, counterclockwise, or both faces are drawn. * @param face the face(s) to draw. */ void setDrawFace(DrawFace face) { GrAssert(kInvalid_DrawFace != face); fCommon.fDrawFace = face; } /** * Gets whether the target is drawing clockwise, counterclockwise, * or both faces. * @return the current draw face(s). */ DrawFace getDrawFace() const { return fCommon.fDrawFace; } /// @} /////////////////////////////////////////////////////////////////////////// bool isStageEnabled(int s) const { GrAssert((unsigned)s < kNumStages); return (NULL != fStages[s].getEffect()); } bool operator ==(const GrDrawState& s) const { if (fRenderTarget.get() != s.fRenderTarget.get() || fCommon != s.fCommon) { return false; } if (fVertexAttribs.count() != s.fVertexAttribs.count()) { return false; } for (int i = 0; i < fVertexAttribs.count(); ++i) { if (fVertexAttribs[i] != s.fVertexAttribs[i]) { return false; } } for (int i = 0; i < kAttribIndexCount; ++i) { if ((i == kPosition_AttribIndex || s.fCommon.fAttribBindings & kAttribIndexMasks[i]) && fAttribIndices[i] != s.fAttribIndices[i]) { return false; } } for (int i = 0; i < kNumStages; i++) { bool enabled = this->isStageEnabled(i); if (enabled != s.isStageEnabled(i)) { return false; } if (enabled && this->fStages[i] != s.fStages[i]) { return false; } } return true; } bool operator !=(const GrDrawState& s) const { return !(*this == s); } GrDrawState& operator= (const GrDrawState& s) { this->setRenderTarget(s.fRenderTarget.get()); fCommon = s.fCommon; fVertexAttribs = s.fVertexAttribs; for (int i = 0; i < kAttribIndexCount; i++) { fAttribIndices[i] = s.fAttribIndices[i]; } for (int i = 0; i < kNumStages; i++) { if (s.isStageEnabled(i)) { this->fStages[i] = s.fStages[i]; } } return *this; } private: /** Fields that are identical in GrDrawState and GrDrawState::DeferredState. */ struct CommonState { // These fields are roughly sorted by decreasing likelihood of being different in op== GrColor fColor; GrAttribBindings fAttribBindings; SkMatrix fViewMatrix; GrBlendCoeff fSrcBlend; GrBlendCoeff fDstBlend; GrColor fBlendConstant; uint32_t fFlagBits; VertexEdgeType fVertexEdgeType; GrStencilSettings fStencilSettings; int fFirstCoverageStage; GrColor fCoverage; SkXfermode::Mode fColorFilterMode; GrColor fColorFilterColor; DrawFace fDrawFace; bool operator== (const CommonState& other) const { return fColor == other.fColor && fAttribBindings == other.fAttribBindings && fViewMatrix.cheapEqualTo(other.fViewMatrix) && fSrcBlend == other.fSrcBlend && fDstBlend == other.fDstBlend && fBlendConstant == other.fBlendConstant && fFlagBits == other.fFlagBits && fVertexEdgeType == other.fVertexEdgeType && fStencilSettings == other.fStencilSettings && fFirstCoverageStage == other.fFirstCoverageStage && fCoverage == other.fCoverage && fColorFilterMode == other.fColorFilterMode && fColorFilterColor == other.fColorFilterColor && fDrawFace == other.fDrawFace; } bool operator!= (const CommonState& other) const { return !(*this == other); } }; /** GrDrawState uses GrEffectStages to hold stage state which holds a ref on GrEffectRef. DeferredState must directly reference GrEffects, however. */ struct SavedEffectStage { SavedEffectStage() : fEffect(NULL) {} const GrEffect* fEffect; GrEffectStage::SavedCoordChange fCoordChange; }; public: /** * DeferredState contains all of the data of a GrDrawState but does not hold refs on GrResource * objects. Resources are allowed to hit zero ref count while in DeferredStates. Their internal * dispose mechanism returns them to the cache. This allows recycling resources through the * the cache while they are in a deferred draw queue. */ class DeferredState { public: DeferredState() : fRenderTarget(NULL) { GR_DEBUGCODE(fInitialized = false;) } // TODO: Remove this when DeferredState no longer holds a ref to the RT ~DeferredState() { SkSafeUnref(fRenderTarget); } void saveFrom(const GrDrawState& drawState) { fCommon = drawState.fCommon; // TODO: Here we will copy the GrRenderTarget pointer without taking a ref. fRenderTarget = drawState.fRenderTarget.get(); SkSafeRef(fRenderTarget); fVertexAttribs = drawState.fVertexAttribs; for (int i = 0; i < kAttribIndexCount; i++) { fAttribIndices[i] = drawState.fAttribIndices[i]; } // Here we ref the effects directly rather than the effect-refs. TODO: When the effect- // ref gets fully unref'ed it will cause the underlying effect to unref its resources // and recycle them to the cache (if no one else is holding a ref to the resources). for (int i = 0; i < kNumStages; ++i) { fStages[i].saveFrom(drawState.fStages[i]); } GR_DEBUGCODE(fInitialized = true;) } void restoreTo(GrDrawState* drawState) { GrAssert(fInitialized); drawState->fCommon = fCommon; drawState->setRenderTarget(fRenderTarget); drawState->fVertexAttribs = fVertexAttribs; for (int i = 0; i < kAttribIndexCount; i++) { drawState->fAttribIndices[i] = fAttribIndices[i]; } for (int i = 0; i < kNumStages; ++i) { fStages[i].restoreTo(&drawState->fStages[i]); } } bool isEqual(const GrDrawState& state) const { if (fRenderTarget != state.fRenderTarget.get() || fCommon != state.fCommon) { return false; } for (int i = 0; i < kAttribIndexCount; ++i) { if ((i == kPosition_AttribIndex || state.fCommon.fAttribBindings & kAttribIndexMasks[i]) && fAttribIndices[i] != state.fAttribIndices[i]) { return false; } } if (fVertexAttribs.count() != state.fVertexAttribs.count()) { return false; } for (int i = 0; i < fVertexAttribs.count(); ++i) if (fVertexAttribs[i] != state.fVertexAttribs[i]) { return false; } for (int i = 0; i < kNumStages; ++i) { if (!fStages[i].isEqual(state.fStages[i])) { return false; } } return true; } private: GrRenderTarget* fRenderTarget; CommonState fCommon; int fAttribIndices[kAttribIndexCount]; GrVertexAttribArray fVertexAttribs; GrEffectStage::DeferredStage fStages[kNumStages]; GR_DEBUGCODE(bool fInitialized;) }; private: // helper array to let us check the current bindings so we know what bound attrib indices // we care about static const GrAttribBindings kAttribIndexMasks[kAttribIndexCount]; SkAutoTUnref fRenderTarget; CommonState fCommon; int fAttribIndices[kAttribIndexCount]; GrVertexAttribArray fVertexAttribs; GrEffectStage fStages[kNumStages]; typedef GrRefCnt INHERITED; }; GR_MAKE_BITFIELD_OPS(GrDrawState::BlendOptFlags); #endif