/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrDrawState_DEFINED #define GrDrawState_DEFINED #include "GrBackendEffectFactory.h" #include "GrColor.h" #include "GrMatrix.h" #include "GrRefCnt.h" #include "GrEffectStage.h" #include "GrStencil.h" #include "GrTexture.h" #include "GrRenderTarget.h" #include "effects/GrSingleTextureEffect.h" #include "SkXfermode.h" class GrPaint; class GrDrawState : public GrRefCnt { public: SK_DECLARE_INST_COUNT(GrDrawState) /** * Total number of effect stages. Each stage can host a GrEffect. A stage is enabled if it has a * GrEffect. The effect produces an output color in the fragment shader. It's inputs are the * output from the previous enabled stage and a position. The position is either derived from * the interpolated vertex positions or explicit per-vertex coords, depending upon the * GrVertexLayout used to draw. * * The stages are divided into two sets, color-computing and coverage-computing. The final color * stage produces the final pixel color. The coverage-computing stages function exactly as the * color-computing but the output of the final coverage stage is treated as a fractional pixel * coverage rather than as input to the src/dst color blend step. * * The input color to the first enabled color-stage is either the constant color or interpolated * per-vertex colors, depending upon GrVertexLayout. The input to the first coverage stage is * either a constant coverage (usually full-coverage), interpolated per-vertex coverage, or * edge-AA computed coverage. (This latter is going away as soon as it can be rewritten as a * GrEffect). * * Stages 0 through GrPaint::kTotalStages-1 are reserved for stages copied from the client's * GrPaint. Stages GrPaint::kTotalStages through kNumStages-2 are earmarked for use by * GrTextContext and GrPathRenderer-derived classes. kNumStages-1 is earmarked for clipping * by GrClipMaskManager. */ enum { kNumStages = 5, kMaxTexCoords = kNumStages }; GrDrawState() : fRenderTarget(NULL) { this->reset(); } GrDrawState(const GrDrawState& state) : fRenderTarget(NULL) { *this = state; } virtual ~GrDrawState() { this->disableStages(); GrSafeSetNull(fRenderTarget); } /** * Resets to the default state. * GrEffects will be removed from all stages. */ void reset() { this->disableStages(); fColor = 0xffffffff; fViewMatrix.reset(); GrSafeSetNull(fRenderTarget); fSrcBlend = kOne_GrBlendCoeff; fDstBlend = kZero_GrBlendCoeff; fBlendConstant = 0x0; fFlagBits = 0x0; fVertexEdgeType = kHairLine_EdgeType; fStencilSettings.setDisabled(); fFirstCoverageStage = kNumStages; fCoverage = 0xffffffff; fColorFilterMode = SkXfermode::kDst_Mode; fColorFilterColor = 0x0; fDrawFace = kBoth_DrawFace; } /** * Initializes the GrDrawState based on a GrPaint. Note that GrDrawState * encompasses more than GrPaint. Aspects of GrDrawState that have no * GrPaint equivalents are not modified. GrPaint has fewer stages than * GrDrawState. The extra GrDrawState stages are disabled. */ void setFromPaint(const GrPaint& paint); /////////////////////////////////////////////////////////////////////////// /// @name Color //// /** * Sets color for next draw to a premultiplied-alpha color. * * @param color the color to set. */ void setColor(GrColor color) { fColor = color; } GrColor getColor() const { return fColor; } /** * Sets the color to be used for the next draw to be * (r,g,b,a) = (alpha, alpha, alpha, alpha). * * @param alpha The alpha value to set as the color. */ void setAlpha(uint8_t a) { this->setColor((a << 24) | (a << 16) | (a << 8) | a); } /** * Add a color filter that can be represented by a color and a mode. Applied * after color-computing texture stages. */ void setColorFilter(GrColor c, SkXfermode::Mode mode) { fColorFilterColor = c; fColorFilterMode = mode; } GrColor getColorFilterColor() const { return fColorFilterColor; } SkXfermode::Mode getColorFilterMode() const { return fColorFilterMode; } /** * Constructor sets the color to be 'color' which is undone by the destructor. */ class AutoColorRestore : public ::GrNoncopyable { public: AutoColorRestore(GrDrawState* drawState, GrColor color) { fDrawState = drawState; fOldColor = fDrawState->getColor(); fDrawState->setColor(color); } ~AutoColorRestore() { fDrawState->setColor(fOldColor); } private: GrDrawState* fDrawState; GrColor fOldColor; }; /// @} /////////////////////////////////////////////////////////////////////////// /// @name Coverage //// /** * Sets a constant fractional coverage to be applied to the draw. The * initial value (after construction or reset()) is 0xff. The constant * coverage is ignored when per-vertex coverage is provided. */ void setCoverage(uint8_t coverage) { fCoverage = GrColorPackRGBA(coverage, coverage, coverage, coverage); } /** * Version of above that specifies 4 channel per-vertex color. The value * should be premultiplied. */ void setCoverage4(GrColor coverage) { fCoverage = coverage; } GrColor getCoverage() const { return fCoverage; } /// @} /////////////////////////////////////////////////////////////////////////// /// @name Textures //// /** * Creates a GrSingleTextureEffect. */ void createTextureEffect(int stageIdx, GrTexture* texture) { GrAssert(!this->getStage(stageIdx).getEffect()); this->stage(stageIdx)->setEffect(SkNEW_ARGS(GrSingleTextureEffect, (texture)))->unref(); } void createTextureEffect(int stageIdx, GrTexture* texture, const GrMatrix& matrix) { GrAssert(!this->getStage(stageIdx).getEffect()); GrEffect* effect = SkNEW_ARGS(GrSingleTextureEffect, (texture)); this->stage(stageIdx)->setEffect(effect, matrix)->unref(); } void createTextureEffect(int stageIdx, GrTexture* texture, const GrMatrix& matrix, const GrTextureParams& params) { GrAssert(!this->getStage(stageIdx).getEffect()); GrEffect* effect = SkNEW_ARGS(GrSingleTextureEffect, (texture, params)); this->stage(stageIdx)->setEffect(effect, matrix)->unref(); } bool stagesDisabled() { for (int i = 0; i < kNumStages; ++i) { if (NULL != fStages[i].getEffect()) { return false; } } return true; } void disableStage(int stageIdx) { fStages[stageIdx].setEffect(NULL); } /** * Release all the GrEffects referred to by this draw state. */ void disableStages() { for (int i = 0; i < kNumStages; ++i) { this->disableStage(i); } } class AutoStageDisable : public ::GrNoncopyable { public: AutoStageDisable(GrDrawState* ds) : fDrawState(ds) {} ~AutoStageDisable() { if (NULL != fDrawState) { fDrawState->disableStages(); } } private: GrDrawState* fDrawState; }; /// @} /////////////////////////////////////////////////////////////////////////// /// @name Stages //// /** * Returns the current stage by index. */ const GrEffectStage& getStage(int stageIdx) const { GrAssert((unsigned)stageIdx < kNumStages); return fStages[stageIdx]; } /** * Writable pointer to a stage. */ GrEffectStage* stage(int stageIdx) { GrAssert((unsigned)stageIdx < kNumStages); return fStages + stageIdx; } /** * Called when the source coord system is changing. preConcat gives the transformation from the * old coord system to the new coord system. */ void preConcatStageMatrices(const GrMatrix& preConcat) { for (int i = 0; i < kNumStages; ++i) { if (this->isStageEnabled(i)) { fStages[i].preConcatCoordChange(preConcat); } } } /** * Called when the source coord system is changing. preConcatInverse is the inverse of the * transformation from the old coord system to the new coord system. Returns false if the matrix * cannot be inverted. */ bool preConcatStageMatricesWithInverse(const GrMatrix& preConcatInverse) { GrMatrix inv; bool computed = false; for (int i = 0; i < kNumStages; ++i) { if (this->isStageEnabled(i)) { if (!computed && !preConcatInverse.invert(&inv)) { return false; } else { computed = true; } fStages[i].preConcatCoordChange(preConcatInverse); } } return true; } /// @} /////////////////////////////////////////////////////////////////////////// /// @name Coverage / Color Stages //// /** * A common pattern is to compute a color with the initial stages and then * modulate that color by a coverage value in later stage(s) (AA, mask- * filters, glyph mask, etc). Color-filters, xfermodes, etc should be * computed based on the pre-coverage-modulated color. The division of * stages between color-computing and coverage-computing is specified by * this method. Initially this is kNumStages (all stages * are color-computing). */ void setFirstCoverageStage(int firstCoverageStage) { GrAssert((unsigned)firstCoverageStage <= kNumStages); fFirstCoverageStage = firstCoverageStage; } /** * Gets the index of the first coverage-computing stage. */ int getFirstCoverageStage() const { return fFirstCoverageStage; } ///@} /////////////////////////////////////////////////////////////////////////// /// @name Blending //// /** * Sets the blending function coefficients. * * The blend function will be: * D' = sat(S*srcCoef + D*dstCoef) * * where D is the existing destination color, S is the incoming source * color, and D' is the new destination color that will be written. sat() * is the saturation function. * * @param srcCoef coefficient applied to the src color. * @param dstCoef coefficient applied to the dst color. */ void setBlendFunc(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) { fSrcBlend = srcCoeff; fDstBlend = dstCoeff; #if GR_DEBUG switch (dstCoeff) { case kDC_GrBlendCoeff: case kIDC_GrBlendCoeff: case kDA_GrBlendCoeff: case kIDA_GrBlendCoeff: GrPrintf("Unexpected dst blend coeff. Won't work correctly with" "coverage stages.\n"); break; default: break; } switch (srcCoeff) { case kSC_GrBlendCoeff: case kISC_GrBlendCoeff: case kSA_GrBlendCoeff: case kISA_GrBlendCoeff: GrPrintf("Unexpected src blend coeff. Won't work correctly with" "coverage stages.\n"); break; default: break; } #endif } GrBlendCoeff getSrcBlendCoeff() const { return fSrcBlend; } GrBlendCoeff getDstBlendCoeff() const { return fDstBlend; } void getDstBlendCoeff(GrBlendCoeff* srcBlendCoeff, GrBlendCoeff* dstBlendCoeff) const { *srcBlendCoeff = fSrcBlend; *dstBlendCoeff = fDstBlend; } /** * Sets the blending function constant referenced by the following blending * coefficients: * kConstC_GrBlendCoeff * kIConstC_GrBlendCoeff * kConstA_GrBlendCoeff * kIConstA_GrBlendCoeff * * @param constant the constant to set */ void setBlendConstant(GrColor constant) { fBlendConstant = constant; } /** * Retrieves the last value set by setBlendConstant() * @return the blending constant value */ GrColor getBlendConstant() const { return fBlendConstant; } /// @} /////////////////////////////////////////////////////////////////////////// /// @name View Matrix //// /** * Sets the matrix applied to vertex positions. * * In the post-view-matrix space the rectangle [0,w]x[0,h] * fully covers the render target. (w and h are the width and height of the * the rendertarget.) */ void setViewMatrix(const GrMatrix& m) { fViewMatrix = m; } /** * Gets a writable pointer to the view matrix. */ GrMatrix* viewMatrix() { return &fViewMatrix; } /** * Multiplies the current view matrix by a matrix * * After this call V' = V*m where V is the old view matrix, * m is the parameter to this function, and V' is the new view matrix. * (We consider positions to be column vectors so position vector p is * transformed by matrix X as p' = X*p.) * * @param m the matrix used to modify the view matrix. */ void preConcatViewMatrix(const GrMatrix& m) { fViewMatrix.preConcat(m); } /** * Multiplies the current view matrix by a matrix * * After this call V' = m*V where V is the old view matrix, * m is the parameter to this function, and V' is the new view matrix. * (We consider positions to be column vectors so position vector p is * transformed by matrix X as p' = X*p.) * * @param m the matrix used to modify the view matrix. */ void postConcatViewMatrix(const GrMatrix& m) { fViewMatrix.postConcat(m); } /** * Retrieves the current view matrix * @return the current view matrix. */ const GrMatrix& getViewMatrix() const { return fViewMatrix; } /** * Retrieves the inverse of the current view matrix. * * If the current view matrix is invertible, return true, and if matrix * is non-null, copy the inverse into it. If the current view matrix is * non-invertible, return false and ignore the matrix parameter. * * @param matrix if not null, will receive a copy of the current inverse. */ bool getViewInverse(GrMatrix* matrix) const { // TODO: determine whether we really need to leave matrix unmodified // at call sites when inversion fails. GrMatrix inverse; if (fViewMatrix.invert(&inverse)) { if (matrix) { *matrix = inverse; } return true; } return false; } //////////////////////////////////////////////////////////////////////////// /** * Preconcats the current view matrix and restores the previous view matrix in the destructor. * Effect matrices are automatically adjusted to compensate. */ class AutoViewMatrixRestore : public ::GrNoncopyable { public: AutoViewMatrixRestore() : fDrawState(NULL) {} AutoViewMatrixRestore(GrDrawState* ds, const GrMatrix& preconcatMatrix, uint32_t explicitCoordStageMask = 0) { fDrawState = NULL; this->set(ds, preconcatMatrix, explicitCoordStageMask); } ~AutoViewMatrixRestore() { this->restore(); } /** * Can be called prior to destructor to restore the original matrix. */ void restore(); void set(GrDrawState* drawState, const GrMatrix& preconcatMatrix, uint32_t explicitCoordStageMask = 0); bool isSet() const { return NULL != fDrawState; } private: GrDrawState* fDrawState; GrMatrix fViewMatrix; GrEffectStage::SavedCoordChange fSavedCoordChanges[GrDrawState::kNumStages]; uint32_t fRestoreMask; }; //////////////////////////////////////////////////////////////////////////// /** * This sets the view matrix to identity and adjusts stage matrices to compensate. The * destructor undoes the changes, restoring the view matrix that was set before the * constructor. It is similar to passing the inverse of the current view matrix to * AutoViewMatrixRestore, but lazily computes the inverse only if necessary. */ class AutoDeviceCoordDraw : ::GrNoncopyable { public: AutoDeviceCoordDraw() : fDrawState(NULL) {} /** * If a stage's texture matrix is applied to explicit per-vertex coords, rather than to * positions, then we don't want to modify its matrix. The explicitCoordStageMask is used * to specify such stages. */ AutoDeviceCoordDraw(GrDrawState* drawState, uint32_t explicitCoordStageMask = 0) { fDrawState = NULL; this->set(drawState, explicitCoordStageMask); } ~AutoDeviceCoordDraw() { this->restore(); } bool set(GrDrawState* drawState, uint32_t explicitCoordStageMask = 0); /** * Returns true if this object was successfully initialized on to a GrDrawState. It may * return false because a non-default constructor or set() were never called or because * the view matrix was not invertible. */ bool succeeded() const { return NULL != fDrawState; } /** * Returns the matrix that was set previously set on the drawState. This is only valid * if succeeded returns true. */ const GrMatrix& getOriginalMatrix() const { GrAssert(this->succeeded()); return fViewMatrix; } /** * Can be called prior to destructor to restore the original matrix. */ void restore(); private: GrDrawState* fDrawState; GrMatrix fViewMatrix; GrEffectStage::SavedCoordChange fSavedCoordChanges[GrDrawState::kNumStages]; uint32_t fRestoreMask; }; /// @} /////////////////////////////////////////////////////////////////////////// /// @name Render Target //// /** * Sets the rendertarget used at the next drawing call * * @param target The render target to set. */ void setRenderTarget(GrRenderTarget* target) { GrSafeAssign(fRenderTarget, target); } /** * Retrieves the currently set rendertarget. * * @return The currently set render target. */ const GrRenderTarget* getRenderTarget() const { return fRenderTarget; } GrRenderTarget* getRenderTarget() { return fRenderTarget; } class AutoRenderTargetRestore : public ::GrNoncopyable { public: AutoRenderTargetRestore() : fDrawState(NULL), fSavedTarget(NULL) {} AutoRenderTargetRestore(GrDrawState* ds, GrRenderTarget* newTarget) { fDrawState = NULL; fSavedTarget = NULL; this->set(ds, newTarget); } ~AutoRenderTargetRestore() { this->restore(); } void restore() { if (NULL != fDrawState) { fDrawState->setRenderTarget(fSavedTarget); fDrawState = NULL; } GrSafeSetNull(fSavedTarget); } void set(GrDrawState* ds, GrRenderTarget* newTarget) { this->restore(); if (NULL != ds) { GrAssert(NULL == fSavedTarget); fSavedTarget = ds->getRenderTarget(); SkSafeRef(fSavedTarget); ds->setRenderTarget(newTarget); fDrawState = ds; } } private: GrDrawState* fDrawState; GrRenderTarget* fSavedTarget; }; /// @} /////////////////////////////////////////////////////////////////////////// /// @name Stencil //// /** * Sets the stencil settings to use for the next draw. * Changing the clip has the side-effect of possibly zeroing * out the client settable stencil bits. So multipass algorithms * using stencil should not change the clip between passes. * @param settings the stencil settings to use. */ void setStencil(const GrStencilSettings& settings) { fStencilSettings = settings; } /** * Shortcut to disable stencil testing and ops. */ void disableStencil() { fStencilSettings.setDisabled(); } const GrStencilSettings& getStencil() const { return fStencilSettings; } GrStencilSettings* stencil() { return &fStencilSettings; } /// @} /////////////////////////////////////////////////////////////////////////// // @name Edge AA // Edge equations can be specified to perform anti-aliasing. Because the // edges are specified as per-vertex data, vertices that are shared by // multiple edges must be split. // //// /** * When specifying edges as vertex data this enum specifies what type of * edges are in use. The edges are always 4 GrScalars in memory, even when * the edge type requires fewer than 4. * * TODO: Fix the fact that HairLine and Circle edge types use y-down coords. * (either adjust in VS or use origin_upper_left in GLSL) */ enum VertexEdgeType { /* 1-pixel wide line 2D implicit line eq (a*x + b*y +c = 0). 4th component unused */ kHairLine_EdgeType, /* Quadratic specified by u^2-v canonical coords (only 2 components used). Coverage based on signed distance with negative being inside, positive outside. Edge specified in window space (y-down) */ kQuad_EdgeType, /* Same as above but for hairline quadratics. Uses unsigned distance. Coverage is min(0, 1-distance). */ kHairQuad_EdgeType, /* Circle specified as center_x, center_y, outer_radius, inner_radius all in window space (y-down). */ kCircle_EdgeType, kVertexEdgeTypeCnt }; /** * Determines the interpretation per-vertex edge data when the * kEdge_VertexLayoutBit is set (see GrDrawTarget). When per-vertex edges * are not specified the value of this setting has no effect. */ void setVertexEdgeType(VertexEdgeType type) { GrAssert(type >=0 && type < kVertexEdgeTypeCnt); fVertexEdgeType = type; } VertexEdgeType getVertexEdgeType() const { return fVertexEdgeType; } /// @} /////////////////////////////////////////////////////////////////////////// /// @name State Flags //// /** * Flags that affect rendering. Controlled using enable/disableState(). All * default to disabled. */ enum StateBits { /** * Perform dithering. TODO: Re-evaluate whether we need this bit */ kDither_StateBit = 0x01, /** * Perform HW anti-aliasing. This means either HW FSAA, if supported * by the render target, or smooth-line rendering if a line primitive * is drawn and line smoothing is supported by the 3D API. */ kHWAntialias_StateBit = 0x02, /** * Draws will respect the clip, otherwise the clip is ignored. */ kClip_StateBit = 0x04, /** * Disables writing to the color buffer. Useful when performing stencil * operations. */ kNoColorWrites_StateBit = 0x08, // Users of the class may add additional bits to the vector kDummyStateBit, kLastPublicStateBit = kDummyStateBit-1, }; void resetStateFlags() { fFlagBits = 0; } /** * Enable render state settings. * * @param stateBits bitfield of StateBits specifying the states to enable */ void enableState(uint32_t stateBits) { fFlagBits |= stateBits; } /** * Disable render state settings. * * @param stateBits bitfield of StateBits specifying the states to disable */ void disableState(uint32_t stateBits) { fFlagBits &= ~(stateBits); } /** * Enable or disable stateBits based on a boolean. * * @param stateBits bitfield of StateBits to enable or disable * @param enable if true enable stateBits, otherwise disable */ void setState(uint32_t stateBits, bool enable) { if (enable) { this->enableState(stateBits); } else { this->disableState(stateBits); } } bool isDitherState() const { return 0 != (fFlagBits & kDither_StateBit); } bool isHWAntialiasState() const { return 0 != (fFlagBits & kHWAntialias_StateBit); } bool isClipState() const { return 0 != (fFlagBits & kClip_StateBit); } bool isColorWriteDisabled() const { return 0 != (fFlagBits & kNoColorWrites_StateBit); } bool isStateFlagEnabled(uint32_t stateBit) const { return 0 != (stateBit & fFlagBits); } /// @} /////////////////////////////////////////////////////////////////////////// /// @name Face Culling //// enum DrawFace { kInvalid_DrawFace = -1, kBoth_DrawFace, kCCW_DrawFace, kCW_DrawFace, }; /** * Controls whether clockwise, counterclockwise, or both faces are drawn. * @param face the face(s) to draw. */ void setDrawFace(DrawFace face) { GrAssert(kInvalid_DrawFace != face); fDrawFace = face; } /** * Gets whether the target is drawing clockwise, counterclockwise, * or both faces. * @return the current draw face(s). */ DrawFace getDrawFace() const { return fDrawFace; } /// @} /////////////////////////////////////////////////////////////////////////// bool isStageEnabled(int s) const { GrAssert((unsigned)s < kNumStages); return (NULL != fStages[s].getEffect()); } // Most stages are usually not used, so conditionals here // reduce the expected number of bytes touched by 50%. bool operator ==(const GrDrawState& s) const { if (fColor != s.fColor || !s.fViewMatrix.cheapEqualTo(fViewMatrix) || fRenderTarget != s.fRenderTarget || fSrcBlend != s.fSrcBlend || fDstBlend != s.fDstBlend || fBlendConstant != s.fBlendConstant || fFlagBits != s.fFlagBits || fVertexEdgeType != s.fVertexEdgeType || fStencilSettings != s.fStencilSettings || fFirstCoverageStage != s.fFirstCoverageStage || fCoverage != s.fCoverage || fColorFilterMode != s.fColorFilterMode || fColorFilterColor != s.fColorFilterColor || fDrawFace != s.fDrawFace) { return false; } for (int i = 0; i < kNumStages; i++) { bool enabled = this->isStageEnabled(i); if (enabled != s.isStageEnabled(i)) { return false; } if (enabled && this->fStages[i] != s.fStages[i]) { return false; } } return true; } bool operator !=(const GrDrawState& s) const { return !(*this == s); } // Most stages are usually not used, so conditionals here // reduce the expected number of bytes touched by 50%. GrDrawState& operator =(const GrDrawState& s) { fColor = s.fColor; fViewMatrix = s.fViewMatrix; SkRefCnt_SafeAssign(fRenderTarget, s.fRenderTarget); fSrcBlend = s.fSrcBlend; fDstBlend = s.fDstBlend; fBlendConstant = s.fBlendConstant; fFlagBits = s.fFlagBits; fVertexEdgeType = s.fVertexEdgeType; fStencilSettings = s.fStencilSettings; fFirstCoverageStage = s.fFirstCoverageStage; fCoverage = s.fCoverage; fColorFilterMode = s.fColorFilterMode; fColorFilterColor = s.fColorFilterColor; fDrawFace = s.fDrawFace; for (int i = 0; i < kNumStages; i++) { if (s.isStageEnabled(i)) { this->fStages[i] = s.fStages[i]; } } return *this; } private: // These fields are roughly sorted by decreasing likelihood of being different in op== GrColor fColor; GrMatrix fViewMatrix; GrRenderTarget* fRenderTarget; GrBlendCoeff fSrcBlend; GrBlendCoeff fDstBlend; GrColor fBlendConstant; uint32_t fFlagBits; VertexEdgeType fVertexEdgeType; GrStencilSettings fStencilSettings; int fFirstCoverageStage; GrColor fCoverage; SkXfermode::Mode fColorFilterMode; GrColor fColorFilterColor; DrawFace fDrawFace; // This field must be last; it will not be copied or compared // if the corresponding fTexture[] is NULL. GrEffectStage fStages[kNumStages]; typedef GrRefCnt INHERITED; }; #endif