/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrAARectRenderer.h" #include "GrAtlasTextContext.h" #include "GrBatch.h" #include "GrBatchTest.h" #include "GrDefaultGeoProcFactory.h" #include "GrDrawContext.h" #include "GrOvalRenderer.h" #include "GrPathRenderer.h" #include "GrRenderTarget.h" #include "GrRenderTargetPriv.h" #include "GrStrokeRectBatch.h" #include "GrStencilAndCoverTextContext.h" #define ASSERT_OWNED_RESOURCE(R) SkASSERT(!(R) || (R)->getContext() == fContext) #define RETURN_IF_ABANDONED if (!fDrawTarget) { return; } #define RETURN_FALSE_IF_ABANDONED if (!fDrawTarget) { return false; } #define RETURN_NULL_IF_ABANDONED if (!fDrawTarget) { return NULL; } class AutoCheckFlush { public: AutoCheckFlush(GrContext* context) : fContext(context) { SkASSERT(context); } ~AutoCheckFlush() { fContext->flushIfNecessary(); } private: GrContext* fContext; }; GrDrawContext::GrDrawContext(GrContext* context, GrDrawTarget* drawTarget, const SkSurfaceProps& surfaceProps) : fContext(context) , fDrawTarget(SkRef(drawTarget)) , fTextContext(NULL) , fSurfaceProps(surfaceProps) { } GrDrawContext::~GrDrawContext() { SkSafeUnref(fDrawTarget); SkDELETE(fTextContext); } void GrDrawContext::copySurface(GrRenderTarget* dst, GrSurface* src, const SkIRect& srcRect, const SkIPoint& dstPoint) { if (!this->prepareToDraw(dst)) { return; } fDrawTarget->copySurface(dst, src, srcRect, dstPoint); } GrTextContext* GrDrawContext::createTextContext(GrRenderTarget* renderTarget, const SkSurfaceProps& surfaceProps) { if (fContext->caps()->shaderCaps()->pathRenderingSupport() && renderTarget->isStencilBufferMultisampled() && fSurfaceProps.isUseDistanceFieldFonts()) { // FIXME: Rename the dff flag to be more general. GrStencilAttachment* sb = renderTarget->renderTargetPriv().attachStencilAttachment(); if (sb) { return GrStencilAndCoverTextContext::Create(fContext, this, surfaceProps); } } return GrAtlasTextContext::Create(fContext, this, surfaceProps); } void GrDrawContext::drawText(GrRenderTarget* rt, const GrClip& clip, const GrPaint& grPaint, const SkPaint& skPaint, const SkMatrix& viewMatrix, const char text[], size_t byteLength, SkScalar x, SkScalar y, const SkIRect& clipBounds) { if (!fTextContext) { fTextContext = this->createTextContext(rt, fSurfaceProps); } fTextContext->drawText(rt, clip, grPaint, skPaint, viewMatrix, text, byteLength, x, y, clipBounds); } void GrDrawContext::drawPosText(GrRenderTarget* rt, const GrClip& clip, const GrPaint& grPaint, const SkPaint& skPaint, const SkMatrix& viewMatrix, const char text[], size_t byteLength, const SkScalar pos[], int scalarsPerPosition, const SkPoint& offset, const SkIRect& clipBounds) { if (!fTextContext) { fTextContext = this->createTextContext(rt, fSurfaceProps); } fTextContext->drawPosText(rt, clip, grPaint, skPaint, viewMatrix, text, byteLength, pos, scalarsPerPosition, offset, clipBounds); } void GrDrawContext::drawTextBlob(GrRenderTarget* rt, const GrClip& clip, const SkPaint& skPaint, const SkMatrix& viewMatrix, const SkTextBlob* blob, SkScalar x, SkScalar y, SkDrawFilter* filter, const SkIRect& clipBounds) { if (!fTextContext) { fTextContext = this->createTextContext(rt, fSurfaceProps); } fTextContext->drawTextBlob(rt, clip, skPaint, viewMatrix, blob, x, y, filter, clipBounds); } void GrDrawContext::drawPaths(GrPipelineBuilder* pipelineBuilder, const GrPathProcessor* pathProc, const GrPathRange* pathRange, const void* indices, int /*GrDrawTarget::PathIndexType*/ indexType, const float transformValues[], int /*GrDrawTarget::PathTransformType*/ transformType, int count, int /*GrPathRendering::FillType*/ fill) { fDrawTarget->drawPaths(*pipelineBuilder, pathProc, pathRange, indices, (GrDrawTarget::PathIndexType) indexType, transformValues, (GrDrawTarget::PathTransformType) transformType, count, (GrPathRendering::FillType) fill); } void GrDrawContext::discard(GrRenderTarget* renderTarget) { RETURN_IF_ABANDONED SkASSERT(renderTarget); AutoCheckFlush acf(fContext); if (!this->prepareToDraw(renderTarget)) { return; } fDrawTarget->discard(renderTarget); } void GrDrawContext::clear(GrRenderTarget* renderTarget, const SkIRect* rect, const GrColor color, bool canIgnoreRect) { RETURN_IF_ABANDONED SkASSERT(renderTarget); AutoCheckFlush acf(fContext); if (!this->prepareToDraw(renderTarget)) { return; } fDrawTarget->clear(rect, color, canIgnoreRect, renderTarget); } void GrDrawContext::drawPaint(GrRenderTarget* rt, const GrClip& clip, const GrPaint& origPaint, const SkMatrix& viewMatrix) { RETURN_IF_ABANDONED // set rect to be big enough to fill the space, but not super-huge, so we // don't overflow fixed-point implementations SkRect r; r.setLTRB(0, 0, SkIntToScalar(rt->width()), SkIntToScalar(rt->height())); SkTCopyOnFirstWrite paint(origPaint); // by definition this fills the entire clip, no need for AA if (paint->isAntiAlias()) { paint.writable()->setAntiAlias(false); } bool isPerspective = viewMatrix.hasPerspective(); // We attempt to map r by the inverse matrix and draw that. mapRect will // map the four corners and bound them with a new rect. This will not // produce a correct result for some perspective matrices. if (!isPerspective) { SkMatrix inverse; if (!viewMatrix.invert(&inverse)) { SkDebugf("Could not invert matrix\n"); return; } inverse.mapRect(&r); this->drawRect(rt, clip, *paint, viewMatrix, r); } else { SkMatrix localMatrix; if (!viewMatrix.invert(&localMatrix)) { SkDebugf("Could not invert matrix\n"); return; } AutoCheckFlush acf(fContext); if (!this->prepareToDraw(rt)) { return; } GrPipelineBuilder pipelineBuilder(*paint, rt, clip); fDrawTarget->drawBWRect(pipelineBuilder, paint->getColor(), SkMatrix::I(), r, NULL, &localMatrix); } } static inline bool is_irect(const SkRect& r) { return SkScalarIsInt(r.fLeft) && SkScalarIsInt(r.fTop) && SkScalarIsInt(r.fRight) && SkScalarIsInt(r.fBottom); } static bool apply_aa_to_rect(GrDrawTarget* target, GrPipelineBuilder* pipelineBuilder, SkRect* devBoundRect, const SkRect& rect, SkScalar strokeWidth, const SkMatrix& combinedMatrix, GrColor color) { if (pipelineBuilder->getRenderTarget()->isUnifiedMultisampled() || !combinedMatrix.preservesAxisAlignment()) { return false; } combinedMatrix.mapRect(devBoundRect, rect); if (!combinedMatrix.rectStaysRect()) { return true; } if (strokeWidth < 0) { return !is_irect(*devBoundRect); } return true; } static inline bool rect_contains_inclusive(const SkRect& rect, const SkPoint& point) { return point.fX >= rect.fLeft && point.fX <= rect.fRight && point.fY >= rect.fTop && point.fY <= rect.fBottom; } void GrDrawContext::drawRect(GrRenderTarget* rt, const GrClip& clip, const GrPaint& paint, const SkMatrix& viewMatrix, const SkRect& rect, const GrStrokeInfo* strokeInfo) { RETURN_IF_ABANDONED if (strokeInfo && strokeInfo->isDashed()) { SkPath path; path.setIsVolatile(true); path.addRect(rect); this->drawPath(rt, clip, paint, viewMatrix, path, *strokeInfo); return; } AutoCheckFlush acf(fContext); if (!this->prepareToDraw(rt)) { return; } GrPipelineBuilder pipelineBuilder(paint, rt, clip); SkScalar width = NULL == strokeInfo ? -1 : strokeInfo->getWidth(); // Check if this is a full RT draw and can be replaced with a clear. We don't bother checking // cases where the RT is fully inside a stroke. if (width < 0) { SkRect rtRect; pipelineBuilder.getRenderTarget()->getBoundsRect(&rtRect); SkRect clipSpaceRTRect = rtRect; bool checkClip = GrClip::kWideOpen_ClipType != clip.clipType(); if (checkClip) { clipSpaceRTRect.offset(SkIntToScalar(clip.origin().fX), SkIntToScalar(clip.origin().fY)); } // Does the clip contain the entire RT? if (!checkClip || clip.quickContains(clipSpaceRTRect)) { SkMatrix invM; if (!viewMatrix.invert(&invM)) { return; } // Does the rect bound the RT? SkPoint srcSpaceRTQuad[4]; invM.mapRectToQuad(srcSpaceRTQuad, rtRect); if (rect_contains_inclusive(rect, srcSpaceRTQuad[0]) && rect_contains_inclusive(rect, srcSpaceRTQuad[1]) && rect_contains_inclusive(rect, srcSpaceRTQuad[2]) && rect_contains_inclusive(rect, srcSpaceRTQuad[3])) { // Will it blend? GrColor clearColor; if (paint.isConstantBlendedColor(&clearColor)) { fDrawTarget->clear(NULL, clearColor, true, rt); return; } } } } GrColor color = paint.getColor(); SkRect devBoundRect; bool needAA = paint.isAntiAlias() && !pipelineBuilder.getRenderTarget()->isUnifiedMultisampled(); bool doAA = needAA && apply_aa_to_rect(fDrawTarget, &pipelineBuilder, &devBoundRect, rect, width, viewMatrix, color); if (doAA) { if (width >= 0) { GrAARectRenderer::StrokeAARect(fDrawTarget, pipelineBuilder, color, viewMatrix, rect, devBoundRect, *strokeInfo); } else { // filled AA rect GrAARectRenderer::FillAARect(fDrawTarget, pipelineBuilder, color, viewMatrix, rect, devBoundRect); } return; } if (width >= 0) { GrStrokeRectBatch::Geometry geometry; geometry.fViewMatrix = viewMatrix; geometry.fColor = color; geometry.fRect = rect; geometry.fStrokeWidth = width; // Non-AA hairlines are snapped to pixel centers to make which pixels are hit deterministic bool snapToPixelCenters = (0 == width && !rt->isUnifiedMultisampled()); SkAutoTUnref batch(GrStrokeRectBatch::Create(geometry, snapToPixelCenters)); // Depending on sub-pixel coordinates and the particular GPU, we may lose a corner of // hairline rects. We jam all the vertices to pixel centers to avoid this, but not when MSAA // is enabled because it can cause ugly artifacts. pipelineBuilder.setState(GrPipelineBuilder::kSnapVerticesToPixelCenters_Flag, snapToPixelCenters); fDrawTarget->drawBatch(pipelineBuilder, batch); } else { // filled BW rect fDrawTarget->drawSimpleRect(pipelineBuilder, color, viewMatrix, rect); } } void GrDrawContext::drawNonAARectToRect(GrRenderTarget* rt, const GrClip& clip, const GrPaint& paint, const SkMatrix& viewMatrix, const SkRect& rectToDraw, const SkRect& localRect, const SkMatrix* localMatrix) { RETURN_IF_ABANDONED AutoCheckFlush acf(fContext); if (!this->prepareToDraw(rt)) { return; } GrPipelineBuilder pipelineBuilder(paint, rt, clip); fDrawTarget->drawBWRect(pipelineBuilder, paint.getColor(), viewMatrix, rectToDraw, &localRect, localMatrix); } static const GrGeometryProcessor* set_vertex_attributes(bool hasLocalCoords, bool hasColors, int* colorOffset, int* texOffset, GrColor color, const SkMatrix& viewMatrix, bool coverageIgnored) { using namespace GrDefaultGeoProcFactory; *texOffset = -1; *colorOffset = -1; Color gpColor(color); if (hasColors) { gpColor.fType = Color::kAttribute_Type; } Coverage coverage(coverageIgnored ? Coverage::kNone_Type : Coverage::kSolid_Type); LocalCoords localCoords(hasLocalCoords ? LocalCoords::kHasExplicit_Type : LocalCoords::kUsePosition_Type); if (hasLocalCoords && hasColors) { *colorOffset = sizeof(SkPoint); *texOffset = sizeof(SkPoint) + sizeof(GrColor); } else if (hasLocalCoords) { *texOffset = sizeof(SkPoint); } else if (hasColors) { *colorOffset = sizeof(SkPoint); } return GrDefaultGeoProcFactory::Create(gpColor, coverage, localCoords, viewMatrix); } class DrawVerticesBatch : public GrBatch { public: struct Geometry { GrColor fColor; SkTDArray fPositions; SkTDArray fIndices; SkTDArray fColors; SkTDArray fLocalCoords; }; static GrBatch* Create(const Geometry& geometry, GrPrimitiveType primitiveType, const SkMatrix& viewMatrix, const SkPoint* positions, int vertexCount, const uint16_t* indices, int indexCount, const GrColor* colors, const SkPoint* localCoords, const SkRect& bounds) { return SkNEW_ARGS(DrawVerticesBatch, (geometry, primitiveType, viewMatrix, positions, vertexCount, indices, indexCount, colors, localCoords, bounds)); } const char* name() const override { return "DrawVerticesBatch"; } void getInvariantOutputColor(GrInitInvariantOutput* out) const override { // When this is called on a batch, there is only one geometry bundle if (this->hasColors()) { out->setUnknownFourComponents(); } else { out->setKnownFourComponents(fGeoData[0].fColor); } } void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override { out->setKnownSingleComponent(0xff); } void initBatchTracker(const GrPipelineInfo& init) override { // Handle any color overrides if (!init.readsColor()) { fGeoData[0].fColor = GrColor_ILLEGAL; } init.getOverrideColorIfSet(&fGeoData[0].fColor); // setup batch properties fBatch.fColorIgnored = !init.readsColor(); fBatch.fColor = fGeoData[0].fColor; fBatch.fUsesLocalCoords = init.readsLocalCoords(); fBatch.fCoverageIgnored = !init.readsCoverage(); } void generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) override { int colorOffset = -1, texOffset = -1; SkAutoTUnref gp( set_vertex_attributes(this->hasLocalCoords(), this->hasColors(), &colorOffset, &texOffset, this->color(), this->viewMatrix(), this->coverageIgnored())); batchTarget->initDraw(gp, pipeline); size_t vertexStride = gp->getVertexStride(); SkASSERT(vertexStride == sizeof(SkPoint) + (this->hasLocalCoords() ? sizeof(SkPoint) : 0) + (this->hasColors() ? sizeof(GrColor) : 0)); int instanceCount = fGeoData.count(); const GrVertexBuffer* vertexBuffer; int firstVertex; void* verts = batchTarget->makeVertSpace(vertexStride, this->vertexCount(), &vertexBuffer, &firstVertex); if (!verts) { SkDebugf("Could not allocate vertices\n"); return; } const GrIndexBuffer* indexBuffer = NULL; int firstIndex = 0; uint16_t* indices = NULL; if (this->hasIndices()) { indices = batchTarget->makeIndexSpace(this->indexCount(), &indexBuffer, &firstIndex); if (!indices) { SkDebugf("Could not allocate indices\n"); return; } } int indexOffset = 0; int vertexOffset = 0; for (int i = 0; i < instanceCount; i++) { const Geometry& args = fGeoData[i]; // TODO we can actually cache this interleaved and then just memcopy if (this->hasIndices()) { for (int j = 0; j < args.fIndices.count(); ++j, ++indexOffset) { *(indices + indexOffset) = args.fIndices[j] + vertexOffset; } } for (int j = 0; j < args.fPositions.count(); ++j) { *((SkPoint*)verts) = args.fPositions[j]; if (this->hasColors()) { *(GrColor*)((intptr_t)verts + colorOffset) = args.fColors[j]; } if (this->hasLocalCoords()) { *(SkPoint*)((intptr_t)verts + texOffset) = args.fLocalCoords[j]; } verts = (void*)((intptr_t)verts + vertexStride); vertexOffset++; } } GrVertices vertices; if (this->hasIndices()) { vertices.initIndexed(this->primitiveType(), vertexBuffer, indexBuffer, firstVertex, firstIndex, this->vertexCount(), this->indexCount()); } else { vertices.init(this->primitiveType(), vertexBuffer, firstVertex, this->vertexCount()); } batchTarget->draw(vertices); } SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; } private: DrawVerticesBatch(const Geometry& geometry, GrPrimitiveType primitiveType, const SkMatrix& viewMatrix, const SkPoint* positions, int vertexCount, const uint16_t* indices, int indexCount, const GrColor* colors, const SkPoint* localCoords, const SkRect& bounds) { this->initClassID(); SkASSERT(positions); fBatch.fViewMatrix = viewMatrix; Geometry& installedGeo = fGeoData.push_back(geometry); installedGeo.fPositions.append(vertexCount, positions); if (indices) { installedGeo.fIndices.append(indexCount, indices); fBatch.fHasIndices = true; } else { fBatch.fHasIndices = false; } if (colors) { installedGeo.fColors.append(vertexCount, colors); fBatch.fHasColors = true; } else { fBatch.fHasColors = false; } if (localCoords) { installedGeo.fLocalCoords.append(vertexCount, localCoords); fBatch.fHasLocalCoords = true; } else { fBatch.fHasLocalCoords = false; } fBatch.fVertexCount = vertexCount; fBatch.fIndexCount = indexCount; fBatch.fPrimitiveType = primitiveType; this->setBounds(bounds); } GrPrimitiveType primitiveType() const { return fBatch.fPrimitiveType; } bool batchablePrimitiveType() const { return kTriangles_GrPrimitiveType == fBatch.fPrimitiveType || kLines_GrPrimitiveType == fBatch.fPrimitiveType || kPoints_GrPrimitiveType == fBatch.fPrimitiveType; } GrColor color() const { return fBatch.fColor; } bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; } bool colorIgnored() const { return fBatch.fColorIgnored; } const SkMatrix& viewMatrix() const { return fBatch.fViewMatrix; } bool hasColors() const { return fBatch.fHasColors; } bool hasIndices() const { return fBatch.fHasIndices; } bool hasLocalCoords() const { return fBatch.fHasLocalCoords; } int vertexCount() const { return fBatch.fVertexCount; } int indexCount() const { return fBatch.fIndexCount; } bool coverageIgnored() const { return fBatch.fCoverageIgnored; } bool onCombineIfPossible(GrBatch* t) override { if (!this->pipeline()->isEqual(*t->pipeline())) { return false; } DrawVerticesBatch* that = t->cast(); if (!this->batchablePrimitiveType() || this->primitiveType() != that->primitiveType()) { return false; } SkASSERT(this->usesLocalCoords() == that->usesLocalCoords()); // We currently use a uniform viewmatrix for this batch if (!this->viewMatrix().cheapEqualTo(that->viewMatrix())) { return false; } if (this->hasColors() != that->hasColors()) { return false; } if (this->hasIndices() != that->hasIndices()) { return false; } if (this->hasLocalCoords() != that->hasLocalCoords()) { return false; } if (!this->hasColors() && this->color() != that->color()) { return false; } if (this->color() != that->color()) { fBatch.fColor = GrColor_ILLEGAL; } fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin()); fBatch.fVertexCount += that->vertexCount(); fBatch.fIndexCount += that->indexCount(); this->joinBounds(that->bounds()); return true; } struct BatchTracker { GrPrimitiveType fPrimitiveType; SkMatrix fViewMatrix; GrColor fColor; bool fUsesLocalCoords; bool fColorIgnored; bool fCoverageIgnored; bool fHasColors; bool fHasIndices; bool fHasLocalCoords; int fVertexCount; int fIndexCount; }; BatchTracker fBatch; SkSTArray<1, Geometry, true> fGeoData; }; void GrDrawContext::drawVertices(GrRenderTarget* rt, const GrClip& clip, const GrPaint& paint, const SkMatrix& viewMatrix, GrPrimitiveType primitiveType, int vertexCount, const SkPoint positions[], const SkPoint texCoords[], const GrColor colors[], const uint16_t indices[], int indexCount) { RETURN_IF_ABANDONED AutoCheckFlush acf(fContext); if (!this->prepareToDraw(rt)) { return; } GrPipelineBuilder pipelineBuilder(paint, rt, clip); // TODO clients should give us bounds SkRect bounds; if (!bounds.setBoundsCheck(positions, vertexCount)) { SkDebugf("drawVertices call empty bounds\n"); return; } viewMatrix.mapRect(&bounds); // If we don't have AA then we outset for a half pixel in each direction to account for // snapping if (!paint.isAntiAlias()) { bounds.outset(0.5f, 0.5f); } DrawVerticesBatch::Geometry geometry; geometry.fColor = paint.getColor(); SkAutoTUnref batch(DrawVerticesBatch::Create(geometry, primitiveType, viewMatrix, positions, vertexCount, indices, indexCount, colors, texCoords, bounds)); fDrawTarget->drawBatch(pipelineBuilder, batch); } /////////////////////////////////////////////////////////////////////////////// void GrDrawContext::drawRRect(GrRenderTarget*rt, const GrClip& clip, const GrPaint& paint, const SkMatrix& viewMatrix, const SkRRect& rrect, const GrStrokeInfo& strokeInfo) { RETURN_IF_ABANDONED if (rrect.isEmpty()) { return; } if (strokeInfo.isDashed()) { SkPath path; path.setIsVolatile(true); path.addRRect(rrect); this->drawPath(rt, clip, paint, viewMatrix, path, strokeInfo); return; } AutoCheckFlush acf(fContext); if (!this->prepareToDraw(rt)) { return; } GrPipelineBuilder pipelineBuilder(paint, rt, clip); GrColor color = paint.getColor(); if (!GrOvalRenderer::DrawRRect(fDrawTarget, pipelineBuilder, color, viewMatrix, paint.isAntiAlias(), rrect, strokeInfo)) { SkPath path; path.setIsVolatile(true); path.addRRect(rrect); this->internalDrawPath(fDrawTarget, &pipelineBuilder, viewMatrix, color, paint.isAntiAlias(), path, strokeInfo); } } /////////////////////////////////////////////////////////////////////////////// void GrDrawContext::drawDRRect(GrRenderTarget* rt, const GrClip& clip, const GrPaint& paint, const SkMatrix& viewMatrix, const SkRRect& outer, const SkRRect& inner) { RETURN_IF_ABANDONED if (outer.isEmpty()) { return; } AutoCheckFlush acf(fContext); if (!this->prepareToDraw(rt)) { return; } GrPipelineBuilder pipelineBuilder(paint, rt, clip); GrColor color = paint.getColor(); if (!GrOvalRenderer::DrawDRRect(fDrawTarget, pipelineBuilder, color, viewMatrix, paint.isAntiAlias(), outer, inner)) { SkPath path; path.setIsVolatile(true); path.addRRect(inner); path.addRRect(outer); path.setFillType(SkPath::kEvenOdd_FillType); GrStrokeInfo fillRec(SkStrokeRec::kFill_InitStyle); this->internalDrawPath(fDrawTarget, &pipelineBuilder, viewMatrix, color, paint.isAntiAlias(), path, fillRec); } } /////////////////////////////////////////////////////////////////////////////// void GrDrawContext::drawOval(GrRenderTarget* rt, const GrClip& clip, const GrPaint& paint, const SkMatrix& viewMatrix, const SkRect& oval, const GrStrokeInfo& strokeInfo) { RETURN_IF_ABANDONED if (oval.isEmpty()) { return; } if (strokeInfo.isDashed()) { SkPath path; path.setIsVolatile(true); path.addOval(oval); this->drawPath(rt, clip, paint, viewMatrix, path, strokeInfo); return; } AutoCheckFlush acf(fContext); if (!this->prepareToDraw(rt)) { return; } GrPipelineBuilder pipelineBuilder(paint, rt, clip); GrColor color = paint.getColor(); if (!GrOvalRenderer::DrawOval(fDrawTarget, pipelineBuilder, color, viewMatrix, paint.isAntiAlias(), oval, strokeInfo)) { SkPath path; path.setIsVolatile(true); path.addOval(oval); this->internalDrawPath(fDrawTarget, &pipelineBuilder, viewMatrix, color, paint.isAntiAlias(), path, strokeInfo); } } // Can 'path' be drawn as a pair of filled nested rectangles? static bool is_nested_rects(const SkMatrix& viewMatrix, const SkPath& path, const SkStrokeRec& stroke, SkRect rects[2]) { SkASSERT(stroke.isFillStyle()); if (path.isInverseFillType()) { return false; } // TODO: this restriction could be lifted if we were willing to apply // the matrix to all the points individually rather than just to the rect if (!viewMatrix.preservesAxisAlignment()) { return false; } SkPath::Direction dirs[2]; if (!path.isNestedFillRects(rects, dirs)) { return false; } if (SkPath::kWinding_FillType == path.getFillType() && dirs[0] == dirs[1]) { // The two rects need to be wound opposite to each other return false; } // Right now, nested rects where the margin is not the same width // all around do not render correctly const SkScalar* outer = rects[0].asScalars(); const SkScalar* inner = rects[1].asScalars(); bool allEq = true; SkScalar margin = SkScalarAbs(outer[0] - inner[0]); bool allGoE1 = margin >= SK_Scalar1; for (int i = 1; i < 4; ++i) { SkScalar temp = SkScalarAbs(outer[i] - inner[i]); if (temp < SK_Scalar1) { allGoE1 = false; } if (!SkScalarNearlyEqual(margin, temp)) { allEq = false; } } return allEq || allGoE1; } void GrDrawContext::drawPath(GrRenderTarget* rt, const GrClip& clip, const GrPaint& paint, const SkMatrix& viewMatrix, const SkPath& path, const GrStrokeInfo& strokeInfo) { RETURN_IF_ABANDONED if (path.isEmpty()) { if (path.isInverseFillType()) { this->drawPaint(rt, clip, paint, viewMatrix); } return; } GrColor color = paint.getColor(); // Note that internalDrawPath may sw-rasterize the path into a scratch texture. // Scratch textures can be recycled after they are returned to the texture // cache. This presents a potential hazard for buffered drawing. However, // the writePixels that uploads to the scratch will perform a flush so we're // OK. AutoCheckFlush acf(fContext); if (!this->prepareToDraw(rt)) { return; } GrPipelineBuilder pipelineBuilder(paint, rt, clip); if (!strokeInfo.isDashed()) { bool useCoverageAA = paint.isAntiAlias() && !pipelineBuilder.getRenderTarget()->isUnifiedMultisampled(); if (useCoverageAA && strokeInfo.getWidth() < 0 && !path.isConvex()) { // Concave AA paths are expensive - try to avoid them for special cases SkRect rects[2]; if (is_nested_rects(viewMatrix, path, strokeInfo, rects)) { GrAARectRenderer::FillAANestedRects(fDrawTarget, pipelineBuilder, color, viewMatrix, rects); return; } } SkRect ovalRect; bool isOval = path.isOval(&ovalRect); if (isOval && !path.isInverseFillType()) { if (GrOvalRenderer::DrawOval(fDrawTarget, pipelineBuilder, color, viewMatrix, paint.isAntiAlias(), ovalRect, strokeInfo)) { return; } } } this->internalDrawPath(fDrawTarget, &pipelineBuilder, viewMatrix, color, paint.isAntiAlias(), path, strokeInfo); } void GrDrawContext::internalDrawPath(GrDrawTarget* target, GrPipelineBuilder* pipelineBuilder, const SkMatrix& viewMatrix, GrColor color, bool useAA, const SkPath& path, const GrStrokeInfo& strokeInfo) { RETURN_IF_ABANDONED SkASSERT(!path.isEmpty()); // An Assumption here is that path renderer would use some form of tweaking // the src color (either the input alpha or in the frag shader) to implement // aa. If we have some future driver-mojo path AA that can do the right // thing WRT to the blend then we'll need some query on the PR. bool useCoverageAA = useAA && !pipelineBuilder->getRenderTarget()->isUnifiedMultisampled(); GrPathRendererChain::DrawType type = useCoverageAA ? GrPathRendererChain::kColorAntiAlias_DrawType : GrPathRendererChain::kColor_DrawType; const SkPath* pathPtr = &path; SkTLazy tmpPath; const GrStrokeInfo* strokeInfoPtr = &strokeInfo; // Try a 1st time without stroking the path and without allowing the SW renderer GrPathRenderer* pr = fContext->getPathRenderer(target, pipelineBuilder, viewMatrix, *pathPtr, *strokeInfoPtr, false, type); GrStrokeInfo dashlessStrokeInfo(strokeInfo, false); if (NULL == pr && strokeInfo.isDashed()) { // It didn't work above, so try again with dashed stroke converted to a dashless stroke. if (!strokeInfo.applyDashToPath(tmpPath.init(), &dashlessStrokeInfo, *pathPtr)) { return; } pathPtr = tmpPath.get(); if (pathPtr->isEmpty()) { return; } strokeInfoPtr = &dashlessStrokeInfo; pr = fContext->getPathRenderer(target, pipelineBuilder, viewMatrix, *pathPtr, *strokeInfoPtr, false, type); } if (NULL == pr) { if (!GrPathRenderer::IsStrokeHairlineOrEquivalent(*strokeInfoPtr, viewMatrix, NULL) && !strokeInfoPtr->isFillStyle()) { // It didn't work above, so try again with stroke converted to a fill. if (!tmpPath.isValid()) { tmpPath.init(); } dashlessStrokeInfo.setResScale(SkScalarAbs(viewMatrix.getMaxScale())); if (!dashlessStrokeInfo.applyToPath(tmpPath.get(), *pathPtr)) { return; } pathPtr = tmpPath.get(); if (pathPtr->isEmpty()) { return; } dashlessStrokeInfo.setFillStyle(); strokeInfoPtr = &dashlessStrokeInfo; } // This time, allow SW renderer pr = fContext->getPathRenderer(target, pipelineBuilder, viewMatrix, *pathPtr, *strokeInfoPtr, true, type); } if (NULL == pr) { #ifdef SK_DEBUG SkDebugf("Unable to find path renderer compatible with path.\n"); #endif return; } GrPathRenderer::DrawPathArgs args; args.fTarget = target; args.fResourceProvider = fContext->resourceProvider(); args.fPipelineBuilder = pipelineBuilder; args.fColor = color; args.fViewMatrix = &viewMatrix; args.fPath = pathPtr; args.fStroke = strokeInfoPtr; args.fAntiAlias = useCoverageAA; pr->drawPath(args); } bool GrDrawContext::prepareToDraw(GrRenderTarget* rt) { RETURN_FALSE_IF_ABANDONED ASSERT_OWNED_RESOURCE(rt); SkASSERT(rt); return true; } void GrDrawContext::drawBatch(GrPipelineBuilder* pipelineBuilder, GrBatch* batch) { fDrawTarget->drawBatch(*pipelineBuilder, batch); } /////////////////////////////////////////////////////////////////////////////////////////////////// #ifdef GR_TEST_UTILS static uint32_t seed_vertices(GrPrimitiveType type) { switch (type) { case kTriangles_GrPrimitiveType: case kTriangleStrip_GrPrimitiveType: case kTriangleFan_GrPrimitiveType: return 3; case kPoints_GrPrimitiveType: return 1; case kLines_GrPrimitiveType: case kLineStrip_GrPrimitiveType: return 2; } SkFAIL("Incomplete switch\n"); return 0; } static uint32_t primitive_vertices(GrPrimitiveType type) { switch (type) { case kTriangles_GrPrimitiveType: return 3; case kLines_GrPrimitiveType: return 2; case kTriangleStrip_GrPrimitiveType: case kTriangleFan_GrPrimitiveType: case kPoints_GrPrimitiveType: case kLineStrip_GrPrimitiveType: return 1; } SkFAIL("Incomplete switch\n"); return 0; } static SkPoint random_point(SkRandom* random, SkScalar min, SkScalar max) { SkPoint p; p.fX = random->nextRangeScalar(min, max); p.fY = random->nextRangeScalar(min, max); return p; } static void randomize_params(size_t count, size_t maxVertex, SkScalar min, SkScalar max, SkRandom* random, SkTArray* positions, SkTArray* texCoords, bool hasTexCoords, SkTArray* colors, bool hasColors, SkTArray* indices, bool hasIndices) { for (uint32_t v = 0; v < count; v++) { positions->push_back(random_point(random, min, max)); if (hasTexCoords) { texCoords->push_back(random_point(random, min, max)); } if (hasColors) { colors->push_back(GrRandomColor(random)); } if (hasIndices) { SkASSERT(maxVertex <= SK_MaxU16); indices->push_back(random->nextULessThan((uint16_t)maxVertex)); } } } BATCH_TEST_DEFINE(VerticesBatch) { GrPrimitiveType type = GrPrimitiveType(random->nextULessThan(kLast_GrPrimitiveType + 1)); uint32_t primitiveCount = random->nextRangeU(1, 100); // TODO make 'sensible' indexbuffers SkTArray positions; SkTArray texCoords; SkTArray colors; SkTArray indices; bool hasTexCoords = random->nextBool(); bool hasIndices = random->nextBool(); bool hasColors = random->nextBool(); uint32_t vertexCount = seed_vertices(type) + (primitiveCount - 1) * primitive_vertices(type); static const SkScalar kMinVertExtent = -100.f; static const SkScalar kMaxVertExtent = 100.f; randomize_params(seed_vertices(type), vertexCount, kMinVertExtent, kMaxVertExtent, random, &positions, &texCoords, hasTexCoords, &colors, hasColors, &indices, hasIndices); for (uint32_t i = 1; i < primitiveCount; i++) { randomize_params(primitive_vertices(type), vertexCount, kMinVertExtent, kMaxVertExtent, random, &positions, &texCoords, hasTexCoords, &colors, hasColors, &indices, hasIndices); } SkMatrix viewMatrix = GrTest::TestMatrix(random); SkRect bounds; SkDEBUGCODE(bool result = ) bounds.setBoundsCheck(positions.begin(), vertexCount); SkASSERT(result); viewMatrix.mapRect(&bounds); DrawVerticesBatch::Geometry geometry; geometry.fColor = GrRandomColor(random); return DrawVerticesBatch::Create(geometry, type, viewMatrix, positions.begin(), vertexCount, indices.begin(), hasIndices ? vertexCount : 0, colors.begin(), texCoords.begin(), bounds); } #endif