/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrDefaultGeoProcFactory.h" #include "SkRefCnt.h" #include "glsl/GrGLSLColorSpaceXformHelper.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLGeometryProcessor.h" #include "glsl/GrGLSLVertexGeoBuilder.h" #include "glsl/GrGLSLVarying.h" #include "glsl/GrGLSLUniformHandler.h" #include "glsl/GrGLSLUtil.h" /* * The default Geometry Processor simply takes position and multiplies it by the uniform view * matrix. It also leaves coverage untouched. Behind the scenes, we may add per vertex color or * local coords. */ enum GPFlag { kColorAttribute_GPFlag = 0x1, kColorAttributeIsSkColor_GPFlag = 0x2, kLocalCoordAttribute_GPFlag = 0x4, kCoverageAttribute_GPFlag = 0x8, kLinearizeColorAttribute_GPFlag = 0x10, }; class DefaultGeoProc : public GrGeometryProcessor { public: static sk_sp Make(uint32_t gpTypeFlags, GrColor color, sk_sp colorSpaceXform, const SkMatrix& viewMatrix, const SkMatrix& localMatrix, bool localCoordsWillBeRead, uint8_t coverage) { return sk_sp(new DefaultGeoProc( gpTypeFlags, color, std::move(colorSpaceXform), viewMatrix, localMatrix, coverage, localCoordsWillBeRead)); } const char* name() const override { return "DefaultGeometryProcessor"; } const Attribute* inPosition() const { return fInPosition; } const Attribute* inColor() const { return fInColor; } const Attribute* inLocalCoords() const { return fInLocalCoords; } const Attribute* inCoverage() const { return fInCoverage; } GrColor color() const { return fColor; } bool hasVertexColor() const { return SkToBool(fInColor); } const SkMatrix& viewMatrix() const { return fViewMatrix; } const SkMatrix& localMatrix() const { return fLocalMatrix; } bool localCoordsWillBeRead() const { return fLocalCoordsWillBeRead; } uint8_t coverage() const { return fCoverage; } bool hasVertexCoverage() const { return SkToBool(fInCoverage); } bool linearizeColor() const { // Linearization should only happen with SkColor bool linearize = SkToBool(fFlags & kLinearizeColorAttribute_GPFlag); SkASSERT(!linearize || (fFlags & kColorAttributeIsSkColor_GPFlag)); return linearize; } class GLSLProcessor : public GrGLSLGeometryProcessor { public: GLSLProcessor() : fViewMatrix(SkMatrix::InvalidMatrix()), fColor(GrColor_ILLEGAL), fCoverage(0xff) {} void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { const DefaultGeoProc& gp = args.fGP.cast(); GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; // emit attributes varyingHandler->emitAttributes(gp); // Setup pass through color if (gp.hasVertexColor()) { GrGLSLVarying varying(kHalf4_GrSLType); varyingHandler->addVarying("color", &varying); // There are several optional steps to process the color. Start with the attribute: vertBuilder->codeAppendf("half4 color = %s;", gp.inColor()->name()); // Linearize if (gp.linearizeColor()) { SkString srgbFuncName; static const GrShaderVar gSrgbArgs[] = { GrShaderVar("x", kHalf_GrSLType), }; vertBuilder->emitFunction(kHalf_GrSLType, "srgb_to_linear", SK_ARRAY_COUNT(gSrgbArgs), gSrgbArgs, "return (x <= 0.04045) ? (x / 12.92) " ": pow((x + 0.055) / 1.055, 2.4);", &srgbFuncName); vertBuilder->codeAppendf("color = half4(%s(%s.r), %s(%s.g), %s(%s.b), %s.a);", srgbFuncName.c_str(), gp.inColor()->name(), srgbFuncName.c_str(), gp.inColor()->name(), srgbFuncName.c_str(), gp.inColor()->name(), gp.inColor()->name()); } // For SkColor, do a red/blue swap and premul if (gp.fFlags & kColorAttributeIsSkColor_GPFlag) { vertBuilder->codeAppend("color = half4(color.a * color.bgr, color.a);"); } // Do color-correction to destination gamut if (gp.linearizeColor()) { fColorSpaceHelper.emitCode(uniformHandler, gp.fColorSpaceXform.get(), kVertex_GrShaderFlag); if (fColorSpaceHelper.isValid()) { SkString xformedColor; vertBuilder->appendColorGamutXform(&xformedColor, "color", &fColorSpaceHelper); vertBuilder->codeAppendf("color = %s;", xformedColor.c_str()); } } vertBuilder->codeAppendf("%s = color;\n", varying.vsOut()); fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, varying.fsIn()); } else { this->setupUniformColor(fragBuilder, uniformHandler, args.fOutputColor, &fColorUniform); } // Setup position this->writeOutputPosition(vertBuilder, uniformHandler, gpArgs, gp.inPosition()->name(), gp.viewMatrix(), &fViewMatrixUniform); if (gp.hasExplicitLocalCoords()) { // emit transforms with explicit local coords this->emitTransforms(vertBuilder, varyingHandler, uniformHandler, gp.inLocalCoords()->asShaderVar(), gp.localMatrix(), args.fFPCoordTransformHandler); } else { // emit transforms with position this->emitTransforms(vertBuilder, varyingHandler, uniformHandler, gp.inPosition()->asShaderVar(), gp.localMatrix(), args.fFPCoordTransformHandler); } // Setup coverage as pass through if (gp.hasVertexCoverage()) { fragBuilder->codeAppendf("half alpha = 1.0;"); varyingHandler->addPassThroughAttribute(gp.inCoverage(), "alpha"); fragBuilder->codeAppendf("%s = half4(alpha);", args.fOutputCoverage); } else if (gp.coverage() == 0xff) { fragBuilder->codeAppendf("%s = half4(1);", args.fOutputCoverage); } else { const char* fragCoverage; fCoverageUniform = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType, "Coverage", &fragCoverage); fragBuilder->codeAppendf("%s = half4(%s);", args.fOutputCoverage, fragCoverage); } } static inline void GenKey(const GrGeometryProcessor& gp, const GrShaderCaps&, GrProcessorKeyBuilder* b) { const DefaultGeoProc& def = gp.cast(); uint32_t key = def.fFlags; key |= (def.coverage() == 0xff) ? 0x10 : 0; key |= (def.localCoordsWillBeRead() && def.localMatrix().hasPerspective()) ? 0x20 : 0x0; key |= ComputePosKey(def.viewMatrix()) << 20; b->add32(key); if (def.linearizeColor()) { b->add32(GrColorSpaceXform::XformKey(def.fColorSpaceXform.get())); } } void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& gp, FPCoordTransformIter&& transformIter) override { const DefaultGeoProc& dgp = gp.cast(); if (!dgp.viewMatrix().isIdentity() && !fViewMatrix.cheapEqualTo(dgp.viewMatrix())) { fViewMatrix = dgp.viewMatrix(); float viewMatrix[3 * 3]; GrGLSLGetMatrix<3>(viewMatrix, fViewMatrix); pdman.setMatrix3f(fViewMatrixUniform, viewMatrix); } if (dgp.color() != fColor && !dgp.hasVertexColor()) { float c[4]; GrColorToRGBAFloat(dgp.color(), c); pdman.set4fv(fColorUniform, 1, c); fColor = dgp.color(); } if (dgp.coverage() != fCoverage && !dgp.hasVertexCoverage()) { pdman.set1f(fCoverageUniform, GrNormalizeByteToFloat(dgp.coverage())); fCoverage = dgp.coverage(); } this->setTransformDataHelper(dgp.fLocalMatrix, pdman, &transformIter); if (dgp.linearizeColor() && dgp.fColorSpaceXform) { fColorSpaceHelper.setData(pdman, dgp.fColorSpaceXform.get()); } } private: SkMatrix fViewMatrix; GrColor fColor; uint8_t fCoverage; UniformHandle fViewMatrixUniform; UniformHandle fColorUniform; UniformHandle fCoverageUniform; GrGLSLColorSpaceXformHelper fColorSpaceHelper; typedef GrGLSLGeometryProcessor INHERITED; }; void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override { GLSLProcessor::GenKey(*this, caps, b); } GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const override { return new GLSLProcessor(); } private: DefaultGeoProc(uint32_t gpTypeFlags, GrColor color, sk_sp colorSpaceXform, const SkMatrix& viewMatrix, const SkMatrix& localMatrix, uint8_t coverage, bool localCoordsWillBeRead) : INHERITED(kDefaultGeoProc_ClassID) , fColor(color) , fViewMatrix(viewMatrix) , fLocalMatrix(localMatrix) , fCoverage(coverage) , fFlags(gpTypeFlags) , fLocalCoordsWillBeRead(localCoordsWillBeRead) , fColorSpaceXform(std::move(colorSpaceXform)) { fInPosition = &this->addVertexAttrib("inPosition", kFloat2_GrVertexAttribType); if (fFlags & kColorAttribute_GPFlag) { fInColor = &this->addVertexAttrib("inColor", kUByte4_norm_GrVertexAttribType); } if (fFlags & kLocalCoordAttribute_GPFlag) { fInLocalCoords = &this->addVertexAttrib("inLocalCoord", kFloat2_GrVertexAttribType); this->setHasExplicitLocalCoords(); } if (fFlags & kCoverageAttribute_GPFlag) { fInCoverage = &this->addVertexAttrib("inCoverage", kHalf_GrVertexAttribType); } } const Attribute* fInPosition = nullptr; const Attribute* fInColor = nullptr; const Attribute* fInLocalCoords = nullptr; const Attribute* fInCoverage = nullptr; GrColor fColor; SkMatrix fViewMatrix; SkMatrix fLocalMatrix; uint8_t fCoverage; uint32_t fFlags; bool fLocalCoordsWillBeRead; sk_sp fColorSpaceXform; GR_DECLARE_GEOMETRY_PROCESSOR_TEST typedef GrGeometryProcessor INHERITED; }; GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DefaultGeoProc); #if GR_TEST_UTILS sk_sp DefaultGeoProc::TestCreate(GrProcessorTestData* d) { uint32_t flags = 0; if (d->fRandom->nextBool()) { flags |= kColorAttribute_GPFlag; } if (d->fRandom->nextBool()) { flags |= kColorAttributeIsSkColor_GPFlag; } if (d->fRandom->nextBool()) { flags |= kCoverageAttribute_GPFlag; } if (d->fRandom->nextBool()) { flags |= kLocalCoordAttribute_GPFlag; } return DefaultGeoProc::Make(flags, GrRandomColor(d->fRandom), GrTest::TestColorXform(d->fRandom), GrTest::TestMatrix(d->fRandom), GrTest::TestMatrix(d->fRandom), d->fRandom->nextBool(), GrRandomCoverage(d->fRandom)); } #endif sk_sp GrDefaultGeoProcFactory::Make(const Color& color, const Coverage& coverage, const LocalCoords& localCoords, const SkMatrix& viewMatrix) { uint32_t flags = 0; if (Color::kPremulGrColorAttribute_Type == color.fType) { flags |= kColorAttribute_GPFlag; } else if (Color::kUnpremulSkColorAttribute_Type == color.fType) { flags |= kColorAttribute_GPFlag | kColorAttributeIsSkColor_GPFlag; } if (color.fLinearize) { // It only makes sense to linearize SkColors (which are always sRGB). GrColor values should // have been linearized and gamut-converted during paint conversion SkASSERT(Color::kUnpremulSkColorAttribute_Type == color.fType); flags |= kLinearizeColorAttribute_GPFlag; } flags |= coverage.fType == Coverage::kAttribute_Type ? kCoverageAttribute_GPFlag : 0; flags |= localCoords.fType == LocalCoords::kHasExplicit_Type ? kLocalCoordAttribute_GPFlag : 0; uint8_t inCoverage = coverage.fCoverage; bool localCoordsWillBeRead = localCoords.fType != LocalCoords::kUnused_Type; GrColor inColor = color.fColor; return DefaultGeoProc::Make(flags, inColor, color.fColorSpaceXform, viewMatrix, localCoords.fMatrix ? *localCoords.fMatrix : SkMatrix::I(), localCoordsWillBeRead, inCoverage); } sk_sp GrDefaultGeoProcFactory::MakeForDeviceSpace( const Color& color, const Coverage& coverage, const LocalCoords& localCoords, const SkMatrix& viewMatrix) { SkMatrix invert = SkMatrix::I(); if (LocalCoords::kUnused_Type != localCoords.fType) { SkASSERT(LocalCoords::kUsePosition_Type == localCoords.fType); if (!viewMatrix.isIdentity() && !viewMatrix.invert(&invert)) { return nullptr; } if (localCoords.hasLocalMatrix()) { invert.preConcat(*localCoords.fMatrix); } } LocalCoords inverted(LocalCoords::kUsePosition_Type, &invert); return Make(color, coverage, inverted, SkMatrix::I()); }